Intelligent Biosignal Processing in Wearable and Implantable Sensors

This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical appli...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
EEG
IMU
n/a
XAI
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 06211namaa2201477uu 4500
001 doab87511
003 oapen
005 20220706
006 m o d
007 cr|mn|---annan
008 220706s2022 xx |||||o ||| 0|eng d
020 |a 9783036546018 
020 |a 9783036546025 
020 |a books978-3-0365-4602-5 
024 7 |a 10.3390/books978-3-0365-4602-5  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
720 1 |a Costin, Hariton-Nicolae  |4 edt 
720 1 |a Costin, Hariton-Nicolae  |4 oth 
720 1 |a Sanei, Saeid  |4 edt 
720 1 |a Sanei, Saeid  |4 oth 
245 0 0 |a Intelligent Biosignal Processing in Wearable and Implantable Sensors 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (318 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain-machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering and technology  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a accelerometer 
653 |a annotations 
653 |a artificial intelligence 
653 |a atrial fibrillation 
653 |a beta rebound 
653 |a biomedical monitoring 
653 |a brain-machine interface 
653 |a calibration 
653 |a carbon nanotube 
653 |a cardiac time interval 
653 |a cell signal enhancement 
653 |a cell-line analysis 
653 |a cirrhosis 
653 |a classification models 
653 |a classifications 
653 |a compressed sensing 
653 |a convolutional neural network 
653 |a convolutional neural networks 
653 |a Convolutional Neural Networks (CNN) 
653 |a correlation 
653 |a COVID-19 
653 |a decoding 
653 |a deep learning 
653 |a deep metric learning 
653 |a dimensionality reduction 
653 |a disease management 
653 |a dynamic time warping 
653 |a ECG signal 
653 |a ECG trace image 
653 |a EEG 
653 |a EEG classification 
653 |a electrocardiogram 
653 |a electrocardiogram (ECG) 
653 |a electrocardiography 
653 |a electrodes 
653 |a electromyography 
653 |a electronic nose 
653 |a epileptic seizure detection 
653 |a feature extraction 
653 |a feature selection 
653 |a fiducial point detection 
653 |a gait analysis 
653 |a grasp classification 
653 |a grasp phases analysis 
653 |a heart failure 
653 |a heart rate variability 
653 |a high blood pressure 
653 |a hypertension 
653 |a IMU 
653 |a intrafascicular 
653 |a intraneural 
653 |a k-nearest neighbors classifier 
653 |a Laplacian eigenmaps 
653 |a lens-free shadow imaging technique 
653 |a liver dysfunction 
653 |a locality preserving projections 
653 |a machine learning 
653 |a motor execution 
653 |a motor imagery 
653 |a myoelectric prosthesis 
653 |a n/a 
653 |a osteopenia 
653 |a Parkinson's disease 
653 |a photoplethysmography 
653 |a prediction 
653 |a premature ventricular contraction 
653 |a pressure sensor 
653 |a projection matrices 
653 |a random forest 
653 |a reconstruction dictionaries 
653 |a recording 
653 |a RISC-V 
653 |a sarcopenia 
653 |a seismocardiography 
653 |a sEMG 
653 |a semiconductor metal oxide gas sensor 
653 |a sensors 
653 |a sepsis 
653 |a SHAP 
653 |a signal classifications 
653 |a skin sympathetic nerve activity (SKNA) 
653 |a sympathetic activity (SNA) 
653 |a transfer learning 
653 |a ultra-low-power 
653 |a vagus nerve 
653 |a wearable electroencephalography 
653 |a XAI 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/87511  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5709  |7 0  |z Open Access: DOAB, download the publication