Advances in Plasma Processes for Polymers

Polymerized nanoparticles and nanofibers can be prepared using various processes, such as chemical synthesis, the electrochemical method, electrospinning, ultrasonic irradiation, hard and soft templates, seeding polymerization, interfacial polymerization, and plasma polymerization. Among these proce...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
NO2
PLA
XPS
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05933namaa2201621uu 4500
001 doab87446
003 oapen
005 20220706
006 m o d
007 cr|mn|---annan
008 220706s2022 xx |||||o ||| 0|eng d
020 |a 9783036539157 
020 |a 9783036539164 
020 |a books978-3-0365-3915-7 
024 7 |a 10.3390/books978-3-0365-3915-7  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TDC  |2 bicssc 
720 1 |a Park, Choon-Sang  |4 edt 
720 1 |a Park, Choon-Sang  |4 oth 
245 0 0 |a Advances in Plasma Processes for Polymers 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (370 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Polymerized nanoparticles and nanofibers can be prepared using various processes, such as chemical synthesis, the electrochemical method, electrospinning, ultrasonic irradiation, hard and soft templates, seeding polymerization, interfacial polymerization, and plasma polymerization. Among these processes, plasma polymerization and aerosol-through-plasma (A-T-P) processes have versatile advantages, especially due to them being "dry", for the deposition of plasma polymer films and carbon-based materials with functional properties suitable for a wide range of applications, such as electronic and optical devices, protective coatings, and biomedical materials. Furthermore, it is well known that plasma polymers are highly cross-linked, pinhole free, branched, insoluble, and adhere well to most substrates. In order to synthesize the polymer films using the plasma processes, therefore, it is very important to increase the density and electron temperature of plasma during plasma polymerization. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Industrial chemistry and chemical engineering  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a additive manufacturing 
653 |a adhesion 
653 |a ageing 
653 |a allyl-substituted cyclic carbonate 
653 |a aniline 
653 |a anti-adhesive surface 
653 |a ascorbic acid 
653 |a atmospheric pressure plasma 
653 |a atmospheric pressure plasma jet 
653 |a atmospheric pressure plasma reactor (AP plasma reactor) 
653 |a atmospheric pressure plasmas 
653 |a atmospheric-pressure plasma 
653 |a biomedical applications 
653 |a BOPP foil 
653 |a cellulose 
653 |a cold plasma 
653 |a conducting polymer 
653 |a conductive polymer 
653 |a continuum equation 
653 |a corona discharge 
653 |a cyclic olefin copolymer 
653 |a DCSBD 
653 |a dielectric barrier discharge 
653 |a discharges in liquids 
653 |a electrical discharges 
653 |a enzymatic degradation 
653 |a filler 
653 |a fluorine depletion 
653 |a free-radical polymerization 
653 |a fumaric acid 
653 |a gas products 
653 |a gas sensors 
653 |a gaseous plasma 
653 |a glow-like discharge 
653 |a GO reduction 
653 |a grafting 
653 |a graphene oxide 
653 |a HMDSO 
653 |a hydrogen plasma 
653 |a hydrophilic 
653 |a in-situ iodine (I2) doping 
653 |a inflammatory/immunological response 
653 |a intramuscularly implantation 
653 |a ion beam sputtering 
653 |a low-pressure plasma 
653 |a low-temperature plasma polymerization 
653 |a magnetron sputtering 
653 |a methods of generation 
653 |a microwave discharge 
653 |a microwave discharge in liquid hydrocarbons 
653 |a nanoparticles 
653 |a NO2 
653 |a oleofobization 
653 |a PA6.6 
653 |a PANI thin film 
653 |a paper 
653 |a piezoelectric direct discharge 
653 |a PLA 
653 |a plasma 
653 |a plasma deposition 
653 |a plasma diagnostics 
653 |a plasma modeling 
653 |a plasma polymerisation 
653 |a plasma polymerization 
653 |a plasma process 
653 |a plasma properties 
653 |a plasma treatment 
653 |a plasma-fluorocarbon-polymer 
653 |a poly(lactic acid) 
653 |a polyamide 
653 |a polyamide membranes 
653 |a polyaniline (PANI) 
653 |a polyethylene 
653 |a polyethylene glycol 
653 |a polylactic acid 
653 |a polymer 
653 |a polymer composite 
653 |a polymer films 
653 |a polymers 
653 |a polytetrafluoroethylene 
653 |a porous polythiophene 
653 |a room temperature growth 
653 |a single pin electrode 
653 |a solid products 
653 |a solution plasma 
653 |a sublimation 
653 |a surface activation 
653 |a surface free energy 
653 |a surface functionalization 
653 |a surface modification 
653 |a surface wettability 
653 |a test ink 
653 |a TiO2 + AgO coatings 
653 |a titanium (Ti) alloys 
653 |a toluidine blue method 
653 |a VDBD 
653 |a voltage multiplier 
653 |a VUV radiation 
653 |a water contact angle 
653 |a wettability 
653 |a XPS 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/87446  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5634  |7 0  |z Open Access: DOAB, download the publication