Advances in Object and Activity Detection in Remote Sensing Imagery

The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same t...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04255namaa2200865uu 4500
001 doab84556
003 oapen
005 20220621
006 m o d
007 cr|mn|---annan
008 220621s2022 xx |||||o ||| 0|eng d
020 |a 9783036542294 
020 |a 9783036542300 
020 |a books978-3-0365-4230-0 
024 7 |a 10.3390/books978-3-0365-4230-0  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
720 1 |a Ulhaq, Anwaar  |4 edt 
720 1 |a Gomes, Douglas Pinto Sampaio  |4 edt 
720 1 |a Gomes, Douglas Pinto Sampaio  |4 oth 
720 1 |a Ulhaq, Anwaar  |4 oth 
245 0 0 |a Advances in Object and Activity Detection in Remote Sensing Imagery 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (170 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same time, activity recognition aims to determine the actions or activities of an agent or group of agents based on sensor or video observation data. It is a very important and challenging problem to detect, identify, track, and understand the behaviour of objects through images and videos taken by various cameras. Together, objects and their activity recognition in imaging data captured by remote sensing platforms is a highly dynamic and challenging research topic. During the last decade, there has been significant growth in the number of publications in the field of object and activity recognition. In particular, many researchers have proposed application domains to identify objects and their specific behaviours from air and spaceborne imagery. This Special Issue includes papers that explore novel and challenging topics for object and activity detection in remote sensing images and videos acquired by diverse platforms. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a 3D simulation 
653 |a adaptive dynamic refined single-stage transformer detector 
653 |a air-to-ground synchronization 
653 |a arbitrary-oriented object detection in satellite optical imagery 
653 |a convolutional neural network (CNN) 
653 |a cross-view matching 
653 |a crowd estimation 
653 |a deep learning 
653 |a deep learning (DL) 
653 |a drone 
653 |a dynamic feature refinement 
653 |a feature pyramid network (FPN) 
653 |a feature pyramid transformer 
653 |a green view index (GVI) 
653 |a habitat identification 
653 |a invasive species 
653 |a multi-camera system 
653 |a multiview semantic vegetation index 
653 |a n/a 
653 |a quad feature pyramid network (Quad-FPN) 
653 |a RGB vegetation index 
653 |a semantic segmentation 
653 |a ship detection 
653 |a similarity algorithm for water extraction 
653 |a space alignment 
653 |a spatiotemporal feature map 
653 |a synthetic aperture radar (SAR) 
653 |a synthetic crowd data 
653 |a thermal imaging 
653 |a tidal flat water 
653 |a UAV-assisted calibration 
653 |a unmanned aerial vehicle 
653 |a urban forestry 
653 |a urban vegetation 
653 |a view-invariant description 
653 |a YOLOv3 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/84556  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5540  |7 0  |z Open Access: DOAB, download the publication