Recent Advances in Embedded Computing, Intelligence and Applications

The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
HLS
SVM
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04430namaa2201093uu 4500
001 doab84504
003 oapen
005 20220621
006 m o d
007 cr|mn|---annan
008 220621s2022 xx |||||o ||| 0|eng d
020 |a 9783036542454 
020 |a 9783036542461 
020 |a books978-3-0365-4245-4 
024 7 |a 10.3390/books978-3-0365-4245-4  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
720 1 |a Portilla, Jorge  |4 edt 
720 1 |a Mujica, Gabriel  |4 edt 
720 1 |a Mujica, Gabriel  |4 oth 
720 1 |a Otero, Andres  |4 edt 
720 1 |a Otero, Andres  |4 oth 
720 1 |a Portilla, Jorge  |4 oth 
245 0 0 |a Recent Advances in Embedded Computing, Intelligence and Applications 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (188 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
653 |a 2D graphics accelerator 
653 |a alpha-blending 
653 |a anti-aliasing 
653 |a artificial intelligence 
653 |a block-based neural network 
653 |a Bresenham's algorithm 
653 |a cloud computing 
653 |a code refactoring 
653 |a collaborative filtering 
653 |a Contiki-NG 
653 |a deep learning 
653 |a dynamic and partial reconfiguration 
653 |a edge computing 
653 |a embedded edge computing 
653 |a embedded system 
653 |a embedded systems 
653 |a evolutionary algorithm 
653 |a extreme edge 
653 |a field-programmable gate array 
653 |a flexible 
653 |a fog computing 
653 |a FPGA 
653 |a Gaussian process 
653 |a hardware acceleration 
653 |a hardware design 
653 |a harsh environment 
653 |a high-level synthesis 
653 |a HLS 
653 |a internet of things deployment 
653 |a IoT gateway 
653 |a IoT security 
653 |a line-drawing 
653 |a LoRa 
653 |a low latency 
653 |a low power consumption 
653 |a Movidius VPU 
653 |a neural network 
653 |a neuroevolution 
653 |a neuromorphic processor 
653 |a parallelism 
653 |a performance estimation 
653 |a power consumption 
653 |a quantisation 
653 |a recommender systems 
653 |a reconfigurable hardware 
653 |a reinforcement learning 
653 |a scalability 
653 |a SDSoC 
653 |a smart port 
653 |a support vector machines 
653 |a SVM 
653 |a trustability 
653 |a WiFi 
653 |a ZedBoard 
653 |a Zynq 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/84504  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5488  |7 0  |z Open Access: DOAB, download the publication