Chapter Unemployment dynamics in Italy: a counterfactual analysis at Covid time

This work performs a counterfactual analysis on unemployment dynamics in Italy during the year 2020. In doing so, ARIMA models are estimated and used to make projections for the 2020 quarters. This exercise is performed at population level and for each gender, age and educational groups. Data are fr...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Florence Firenze University Press 2021
Series:Proceedings e report
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 02380namaa2200433uu 4500
001 doab83581
003 oapen
005 20220602
006 m o d
007 cr|mn|---annan
008 220602s2021 xx |||||o ||| 0|eng d
020 |a 978-88-5518-461-8.40 
020 |a 9788855184618 
024 7 |a 10.36253/978-88-5518-461-8.40  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
720 1 |a Bakurov, Illya  |4 aut 
720 1 |a Culotta, Fabrizio  |4 aut 
245 0 0 |a Chapter Unemployment dynamics in Italy: a counterfactual analysis at Covid time 
260 |a Florence  |b Firenze University Press  |c 2021 
300 |a 1 online resource (6 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Proceedings e report 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This work performs a counterfactual analysis on unemployment dynamics in Italy during the year 2020. In doing so, ARIMA models are estimated and used to make projections for the 2020 quarters. This exercise is performed at population level and for each gender, age and educational groups. Data are from the Italian Labor Force Survey covering the years 2015-2019 at quarterly frequency. Over the quarters of the year 2020, i.e. a time period covered by the Covid-19 pandemic and related restrictions, actual and counterfactual unemployment dynamics are compared. Overall, this work tries to answer to the following question: what would have happened to unemployment dynamics if Covid-19 pandemic and related restrictions would not arise as they did? Results can be informative to policymakers if the ARIMA projections can represent a reference for the aftermath of the pandemic. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
653 |a ARIMA 
653 |a Counterfactual Analysis 
653 |a Covid-19 
653 |a Italy 
653 |a Unemployment Dynamics 
773 1 |7 nnaa 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/83581  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/56384/1/26308.pdf  |7 0  |z Open Access: DOAB, download the publication