Chapter Nonparametric methods for stratified C-sample designs: a case study

Several parametric and nonparametric methods have been proposed to deal with stratified C-sample problems where the main interest lies in evaluating the presence of a certain treatment effect, but the strata effects cannot be overlooked. Stratified scenarios can be found in several different fields....

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Florence Firenze University Press 2021
Series:Proceedings e report
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 02639namaa2200409uu 4500
001 doab82660
003 oapen
005 20220602
006 m o d
007 cr|mn|---annan
008 220602s2021 xx |||||o ||| 0|eng d
020 |a 978-88-5518-304-8.05 
020 |a 9788855183048 
024 7 |a 10.36253/978-88-5518-304-8.05  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
720 1 |a ARBORETTI GIANCRISTOFARO, ROSA  |4 aut 
720 1 |a Ceccato, Riccardo  |4 aut 
720 1 |a SALMASO, LUIGI  |4 aut 
245 0 0 |a Chapter Nonparametric methods for stratified C-sample designs: a case study 
260 |a Florence  |b Firenze University Press  |c 2021 
300 |a 1 online resource (6 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Proceedings e report 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Several parametric and nonparametric methods have been proposed to deal with stratified C-sample problems where the main interest lies in evaluating the presence of a certain treatment effect, but the strata effects cannot be overlooked. Stratified scenarios can be found in several different fields. In this paper we focus on a particular case study from the field of education, addressing a typical stochastic ordering problem in the presence of stratification. We are interested in assessing how the performance of students from different degree programs at the University of Padova change, in terms of university credits and grades, when compared with their entry test results. To address this problem, we propose an extension of the Non-Parametric Combination (NPC) methodology, a permutation-based technique (see Pesarin and Salmaso, 2010), as a valuable tool to improve the data analytics for monitoring University students' careers at the School of Engineering of the University of Padova. This new procedure indeed allows us to assess the efficacy of the University of Padova's entry tests in evaluating and selecting future students. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
653 |a Evaluation of Educational Systems 
653 |a Nonparametric permutation 
773 1 |7 nnaa 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/82660  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/56337/1/16976.pdf  |7 0  |z Open Access: DOAB, download the publication