Chapter Random effects regression trees for the analysis of INVALSI data

Mixed or multilevel models exploit random effects to deal with hierarchical data, where statistical units are clustered in groups and cannot be assumed as independent. Sometimes, the assumption of linear dependence of a response on a set of explanatory variables is not plausible, and model specifica...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Florence Firenze University Press 2021
Series:Proceedings e report
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 03320namaa2200445uu 4500
001 doab82527
003 oapen
005 20220602
006 m o d
007 cr|mn|---annan
008 220602s2021 xx |||||o ||| 0|eng d
020 |a 978-88-5518-304-8.07 
020 |a 9788855183048 
024 7 |a 10.36253/978-88-5518-304-8.07  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
720 1 |a VANNUCCI, GIULIA  |4 aut 
720 1 |a GOTTARD, ANNA  |4 aut 
720 1 |a Grilli, Leonardo  |4 aut 
720 1 |a Rampichini, Carla  |4 aut 
245 0 0 |a Chapter Random effects regression trees for the analysis of INVALSI data 
260 |a Florence  |b Firenze University Press  |c 2021 
300 |a 1 online resource (6 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Proceedings e report 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Mixed or multilevel models exploit random effects to deal with hierarchical data, where statistical units are clustered in groups and cannot be assumed as independent. Sometimes, the assumption of linear dependence of a response on a set of explanatory variables is not plausible, and model specification becomes a challenging task. Regression trees can be helpful to capture non-linear effects of the predictors. This method was extended to clustered data by modelling the fixed effects with a decision tree while accounting for the random effects with a linear mixed model in a separate step (Hajjem & Larocque, 2011; Sela & Simonoff, 2012). Random effect regression trees are shown to be less sensitive to parametric assumptions and provide improved predictive power compared to linear models with random effects and regression trees without random effects. We propose a new random effect model, called Tree embedded linear mixed model, where the regression function is piecewise-linear, consisting in the sum of a tree component and a linear component. This model can deal with both non-linear and interaction effects and cluster mean dependencies. The proposal is the mixed effect version of the semi-linear regression trees (Vannucci, 2019; Vannucci & Gottard, 2019). Model fitting is obtained by an iterative two-stage estimation procedure, where both the fixed and the random effects are jointly estimated. The proposed model allows a decomposition of the effect of a given predictor within and between clusters. We will show via a simulation study and an application to INVALSI data that these extensions improve the predictive performance of the model in the presence of quasi-linear relationships, avoiding overfitting, and facilitating interpretability. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
653 |a Hierarchical data 
653 |a Multilevel models 
653 |a Random effects 
653 |a Regression trees 
773 1 |7 nnaa 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/82527  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/56339/1/16978.pdf  |7 0  |z Open Access: DOAB, download the publication