Signal Processing Using Non-invasive Physiological Sensors

Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieve...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
ECG
EEG
EMG
GSR
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05273namaa2201285uu 4500
001 doab81209
003 oapen
005 20220506
006 m o d
007 cr|mn|---annan
008 220506s2022 xx |||||o ||| 0|eng d
020 |a 9783036537191 
020 |a 9783036537207 
020 |a books978-3-0365-3719-1 
024 7 |a 10.3390/books978-3-0365-3719-1  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a MBG  |2 bicssc 
720 1 |a Niazi, Imran Khan  |4 edt 
720 1 |a Naseer, Noman  |4 edt 
720 1 |a Naseer, Noman  |4 oth 
720 1 |a Niazi, Imran Khan  |4 oth 
720 1 |a Santosa, Hendrik  |4 edt 
720 1 |a Santosa, Hendrik  |4 oth 
245 0 0 |a Signal Processing Using Non-invasive Physiological Sensors 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (222 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medical equipment and techniques  |2 bicssc 
653 |a acoustic 
653 |a AMR voice 
653 |a auscultation sites 
653 |a biomedical signal processing 
653 |a blink 
653 |a brain-computer interface 
653 |a brain-computer interface 
653 |a Brain-Computer Interface 
653 |a channel of interest 
653 |a channel selection 
653 |a classification 
653 |a computer aided diagnosis 
653 |a congenital heart disease 
653 |a convolution neural network (CNN) 
653 |a convolutional neural network (CNN) 
653 |a deep neural network 
653 |a discrete wavelet transform 
653 |a ECG 
653 |a ECG derived respiration (EDR) 
653 |a EEG 
653 |a Electrocardiogram (ECG) 
653 |a electroencephalogram (EEG) 
653 |a electroencephalography 
653 |a EMG 
653 |a emotion recognition 
653 |a empirical mode decomposition 
653 |a eye blink 
653 |a feature extraction 
653 |a feature selection and reduction 
653 |a functional near-infrared spectroscopy 
653 |a GSR 
653 |a home automation 
653 |a human machine interface (HMI) 
653 |a hybrid brain-computer interface (BCI) 
653 |a hypertension 
653 |a image gradient 
653 |a image processing 
653 |a long short-term memory (LSTM) 
653 |a machine learning 
653 |a mel-frequency cepstral coefficients 
653 |a mental imagery 
653 |a mobile 
653 |a motor imagery 
653 |a movement intention 
653 |a movement-related cortical potential 
653 |a multiscale principal component analysis 
653 |a myoelectric control 
653 |a neurorehabilitation 
653 |a Open-CV 
653 |a pattern recognition 
653 |a phonocardiogram 
653 |a physiological signals 
653 |a pulse plethysmograph 
653 |a quadriplegia 
653 |a Raspberry Pi 
653 |a reaction 
653 |a reflex 
653 |a region of interest 
653 |a rehabilitation 
653 |a respiratory rate (RR) 
653 |a response 
653 |a short-time Fourier transform (STFT) 
653 |a sound 
653 |a startle 
653 |a statistical analysis 
653 |a steady-state visually evoked potential (SSVEP) 
653 |a stroke 
653 |a successive decomposition index 
653 |a support vector machines 
653 |a wheelchair 
653 |a z-score method 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/81209  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5241  |7 0  |z Open Access: DOAB, download the publication