LEADER 03719namaa2200877uu 4500
001 doab81106
003 oapen
005 20220506
006 m o d
007 cr|mn|---annan
008 220506s2022 xx |||||o ||| 0|eng d
020 |a 9783036515410 
020 |a 9783036515427 
020 |a books978-3-0365-1541-0 
024 7 |a 10.3390/books978-3-0365-1541-0  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
072 7 |a UY  |2 bicssc 
720 1 |a Stefano, Gabriele Di  |4 edt 
720 1 |a Cicerone, Serafino  |4 edt 
720 1 |a Cicerone, Serafino  |4 oth 
720 1 |a Stefano, Gabriele Di  |4 oth 
245 0 0 |a Graph Algorithms and Applications 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (106 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The mixture of data in real-life exhibits structure or connection property in nature. Typical data include biological data, communication network data, image data, etc. Graphs provide a natural way to represent and analyze these types of data and their relationships. Unfortunately, the related algorithms usually suffer from high computational complexity, since some of these problems are NP-hard. Therefore, in recent years, many graph models and optimization algorithms have been proposed to achieve a better balance between efficacy and efficiency. This book contains some papers reporting recent achievements regarding graph models, algorithms, and applications to problems in the real world, with some focus on optimization and computational complexity. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Computer science  |2 bicssc 
650 7 |a Information technology industries  |2 bicssc 
653 |a analysis and design or graph algorithms 
653 |a ancestral mixture model 
653 |a clique independent set 
653 |a clique transversal number 
653 |a cliques 
653 |a computational complexity of graph problems 
653 |a computational social choice 
653 |a congestion games 
653 |a distance-hereditary graphs 
653 |a distributed graph and network algorithms 
653 |a election control 
653 |a evolutionary tree 
653 |a experimental evaluation of graph algorithms 
653 |a forbidden subgraphs 
653 |a graph theory with algorithmic applications 
653 |a hole detection 
653 |a influence maximization 
653 |a k-fold clique transversal set 
653 |a k-planarity 
653 |a minus clique transversal function 
653 |a mixture distance 
653 |a mixture tree 
653 |a multi-winner election 
653 |a NP-hardness 
653 |a paths 
653 |a phylogenetic tree 
653 |a planar graphs 
653 |a polynomial time reduction 
653 |a potential games 
653 |a price of anarchy 
653 |a price of stability 
653 |a pure Nash equilibrium 
653 |a recognition problem 
653 |a signed clique transversal function 
653 |a social influence 
653 |a stretch number 
653 |a tree comparison 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/81106  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5135  |7 0  |z Open Access: DOAB, download the publication