Machine Learning in Sensors and Imaging

Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, mach...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
SNR
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04841namaa2201273uu 4500
001 doab80994
003 oapen
005 20220506
006 m o d
007 cr|mn|---annan
008 220506s2022 xx |||||o ||| 0|eng d
020 |a 9783036537535 
020 |a 9783036537542 
020 |a books978-3-0365-3754-2 
024 7 |a 10.3390/books978-3-0365-3754-2  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
720 1 |a Nam, Hyoungsik  |4 edt 
720 1 |a Nam, Hyoungsik  |4 oth 
245 0 0 |a Machine Learning in Sensors and Imaging 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (302 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a activity recognition 
653 |a artificial neural network 
653 |a BLDC 
653 |a BP artificial neural network 
653 |a burr formation 
653 |a capacitive 
653 |a chaotic system 
653 |a color prior model 
653 |a compressive sensing 
653 |a computer vision 
653 |a coniferous plantations 
653 |a convex optimization 
653 |a convolutional neural network 
653 |a cut interruption 
653 |a deep learning 
653 |a display 
653 |a electric machine protection 
653 |a explainable artificial intelligence 
653 |a extrinsic camera calibration 
653 |a fiber laser 
653 |a forest growing stem volume 
653 |a fuzzy 
653 |a image classification 
653 |a image denoising 
653 |a image encryption 
653 |a imbalanced activities 
653 |a intelligent vehicles 
653 |a laser cutting 
653 |a machine learning 
653 |a machine learning-based classification 
653 |a marine 
653 |a maximum likelihood estimation 
653 |a mixed Poisson-Gaussian likelihood 
653 |a modulation transfer function 
653 |a Naïve bayes 
653 |a neural network 
653 |a noisy 
653 |a non-uniform foundation 
653 |a object detection 
653 |a obstacle avoidance 
653 |a on-shelf availability 
653 |a path planning 
653 |a piston error detection 
653 |a plaintext related 
653 |a plankton 
653 |a Q-learning 
653 |a quality monitoring 
653 |a random forest 
653 |a real-world 
653 |a red-edge band 
653 |a reinforcement learning 
653 |a risk assessment 
653 |a robot arm 
653 |a sampling methods 
653 |a segmented telescope 
653 |a semi-supervised 
653 |a semi-supervised learning 
653 |a SNR 
653 |a star image 
653 |a stochastic analysis 
653 |a structure from motion 
653 |a stylus 
653 |a target reaching 
653 |a temperature estimation 
653 |a texture feature 
653 |a touchscreen 
653 |a transmission-line corridors 
653 |a variable selection 
653 |a vehicle-pavement-foundation interaction 
653 |a wearable sensors 
653 |a wildfire 
653 |a YOLO algorithm 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/80994  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5335  |7 0  |z Open Access: DOAB, download the publication