Fractional Calculus and Special Functions with Applications

The study of fractional integrals and fractional derivatives has a long history, and they have many real-world applications because of their properties of interpolation between integer-order operators. This field includes classical fractional operators such as Riemann-Liouville, Weyl, Caputo, and Gr...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05054namaa2200985uu 4500
001 doab80975
003 oapen
005 20220506
006 m o d
007 cr|mn|---annan
008 220506s2022 xx |||||o ||| 0|eng d
020 |a 9783036536170 
020 |a 9783036536187 
020 |a books978-3-0365-3618-7 
024 7 |a 10.3390/books978-3-0365-3618-7  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a P  |2 bicssc 
720 1 |a Özarslan, Mehmet Ali  |4 edt 
720 1 |a Area, Ivan  |4 edt 
720 1 |a Area, Ivan  |4 oth 
720 1 |a Fernandez, Arran  |4 edt 
720 1 |a Fernandez, Arran  |4 oth 
720 1 |a Özarslan, Mehmet Ali  |4 oth 
245 0 0 |a Fractional Calculus and Special Functions with Applications 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (164 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The study of fractional integrals and fractional derivatives has a long history, and they have many real-world applications because of their properties of interpolation between integer-order operators. This field includes classical fractional operators such as Riemann-Liouville, Weyl, Caputo, and Grunwald-Letnikov; nevertheless, especially in the last two decades, many new operators have also appeared that often define using integrals with special functions in the kernel, such as Atangana-Baleanu, Prabhakar, Marichev-Saigo-Maeda, and the tempered fractional equation, as well as their extended or multivariable forms. These have been intensively studied because they can also be useful in modelling and analysing real-world processes, due to their different properties and behaviours from those of the classical cases.Special functions, such as Mittag-Leffler functions, hypergeometric functions, Fox's H-functions, Wright functions, and Bessel and hyper-Bessel functions, also have important connections with fractional calculus. Some of them, such as the Mittag-Leffler function and its generalisations, appear naturally as solutions of fractional differential equations. Furthermore, many interesting relationships between different special functions are found by using the operators of fractional calculus. Certain special functions have also been applied to analyse the qualitative properties of fractional differential equations, e.g., the concept of Mittag-Leffler stability.The aim of this reprint is to explore and highlight the diverse connections between fractional calculus and special functions, and their associated applications. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Mathematics & science  |2 bicssc 
650 7 |a Research & information: general  |2 bicssc 
653 |a Abel equations 
653 |a analytic continuation 
653 |a Appell functions 
653 |a Atangana-Baleanu derivative 
653 |a Atangana-Baleanu fractional calculus 
653 |a boundary conditions 
653 |a calculus of variations 
653 |a Caputo-Hadamard fractional derivative 
653 |a complex integrals 
653 |a coupled system 
653 |a electrical circuits 
653 |a error bound 
653 |a existence 
653 |a existence and uniqueness solution 
653 |a fixed point theorem 
653 |a fixed point theory 
653 |a fractional derivative 
653 |a fractional derivatives 
653 |a fractional derivatives and integrals 
653 |a fractional differential equations 
653 |a fractional integrals 
653 |a fractional Langevin equations 
653 |a fractional modeling 
653 |a fractional-order Caputo derivative operator 
653 |a fractional-order Riemann-Liouville integral operator 
653 |a generating function 
653 |a Hadamard fractional integral 
653 |a hypergeometric function 
653 |a integral representation 
653 |a k-beta function 
653 |a k-gamma function 
653 |a Laplace transforms 
653 |a Mittag-Leffler functions 
653 |a mixed partial derivatives 
653 |a mobile phone worms 
653 |a n/a 
653 |a physical problems 
653 |a Pochhammer symbol 
653 |a Prabhakar fractional calculus 
653 |a real-world problems 
653 |a reduction and transformation formula 
653 |a second Chebyshev wavelet 
653 |a stochastic processes 
653 |a system of Volterra-Fredholm integro-differential equations 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/80975  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5315  |7 0  |z Open Access: DOAB, download the publication