The Convergence of Human and Artificial Intelligence on Clinical Care - Part I

This edited book contains twelve studies, large and pilots, in five main categories: (i) adaptive imputation to increase the density of clinical data for improving downstream modeling; (ii) machine-learning-empowered diagnosis models; (iii) machine learning models for outcome prediction; (iv) innova...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
EHR
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04529namaa2201105uu 4500
001 doab79618
003 oapen
005 20220321
006 m o d
007 cr|mn|---annan
008 220321s2022 xx |||||o ||| 0|eng d
020 |a 9783036532950 
020 |a 9783036532967 
020 |a books978-3-0365-3295-0 
024 7 |a 10.3390/books978-3-0365-3295-0  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a M  |2 bicssc 
720 1 |a Abedi, Vida  |4 edt 
720 1 |a Abedi, Vida  |4 oth 
245 0 0 |a The Convergence of Human and Artificial Intelligence on Clinical Care - Part I 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (188 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This edited book contains twelve studies, large and pilots, in five main categories: (i) adaptive imputation to increase the density of clinical data for improving downstream modeling; (ii) machine-learning-empowered diagnosis models; (iii) machine learning models for outcome prediction; (iv) innovative use of AI to improve our understanding of the public view; and (v) understanding of the attitude of providers in trusting insights from AI for complex cases. This collection is an excellent example of how technology can add value in healthcare settings and hints at some of the pressing challenges in the field. Artificial intelligence is gradually becoming a go-to technology in clinical care; therefore, it is important to work collaboratively and to shift from performance-driven outcomes to risk-sensitive model optimization, improved transparency, and better patient representation, to ensure more equitable healthcare for all. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
653 |a ADHD 
653 |a alpha-2-adrenergic agonists 
653 |a aneurysm surgery 
653 |a artificial intelligence 
653 |a artificial neural network 
653 |a bariatric surgery 
653 |a Bayesian network 
653 |a C. difficile infection 
653 |a cardiac ultrasound 
653 |a cerebrovascular disorders 
653 |a chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML) for acute monoblastic leukemia and acute monocytic leukemia 
653 |a clinical decision support system 
653 |a clipping time 
653 |a cluster analysis 
653 |a comorbidity 
653 |a complex diseases 
653 |a concordance between hematopathologists 
653 |a COVID-19 
653 |a deep learning 
653 |a digital imaging 
653 |a echocardiography 
653 |a EHR 
653 |a electronic health record 
653 |a electronic health records 
653 |a explainable machine learning 
653 |a health-related quality of life 
653 |a healthcare 
653 |a human factors 
653 |a improving diagnosis accuracy 
653 |a imputation 
653 |a inflammatory bowel disease 
653 |a interpretable machine learning 
653 |a ischemic stroke 
653 |a laboratory measures 
653 |a larynx cancer 
653 |a machine learning 
653 |a machine learning-enabled decision support system 
653 |a mechanical ventilation 
653 |a medical informatics 
653 |a monocytes 
653 |a non-stimulants 
653 |a osteoarthritis 
653 |a outcome prediction 
653 |a passive adherence 
653 |a pharmacotherapy 
653 |a portable ultrasound 
653 |a promonocytes and monoblasts 
653 |a recurrent stroke 
653 |a respiratory failure 
653 |a risk factors 
653 |a SARS-CoV-2 
653 |a septic shock 
653 |a social media 
653 |a stimulants 
653 |a stroke 
653 |a temporary artery occlusion 
653 |a trust 
653 |a Twitter 
653 |a voice change 
653 |a voice pathology classification 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/79618  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/5003  |7 0  |z Open Access: DOAB, download the publication