Big Data Analytics and Information Science for Business and Biomedical Applications

The analysis of Big Data in biomedical as well as business and financial research has drawn much attention from researchers worldwide. This book provides a platform for the deep discussion of state-of-the-art statistical methods developed for the analysis of Big Data in these areas. Both applied and...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
DWD
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 03561namaa2201009uu 4500
001 doab79592
003 oapen
005 20220321
006 m o d
007 cr|mn|---annan
008 220321s2022 xx |||||o ||| 0|eng d
020 |a 9783036531922 
020 |a 9783036531939 
020 |a books978-3-0365-3192-2 
024 7 |a 10.3390/books978-3-0365-3192-2  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a H  |2 bicssc 
072 7 |a JFFP  |2 bicssc 
720 1 |a Ahmed, S. Ejaz  |4 edt 
720 1 |a Ahmed, S. Ejaz  |4 oth 
720 1 |a Nathoo, Farouk  |4 edt 
720 1 |a Nathoo, Farouk  |4 oth 
245 0 0 |a Big Data Analytics and Information Science for Business and Biomedical Applications 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (246 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The analysis of Big Data in biomedical as well as business and financial research has drawn much attention from researchers worldwide. This book provides a platform for the deep discussion of state-of-the-art statistical methods developed for the analysis of Big Data in these areas. Both applied and theoretical contributions are showcased. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Humanities  |2 bicssc 
650 7 |a Social interaction  |2 bicssc 
653 |a abdominal aortic aneurysm 
653 |a ant colony system 
653 |a asymptotic theory 
653 |a bayesian spatial mixture model 
653 |a causal and dilated convolutional neural networks 
653 |a deep learning 
653 |a DWD 
653 |a EEG/MEG data 
653 |a elastic net 
653 |a emulation 
653 |a ensembling 
653 |a entropy-based robust EM 
653 |a estimation consistency 
653 |a feature fusion 
653 |a feature representation 
653 |a financial time series 
653 |a generalized linear models 
653 |a high dimension 
653 |a high dimensional predictors 
653 |a high dimensional time-series 
653 |a high-dimensional 
653 |a high-dimensional data 
653 |a information complexity criteria 
653 |a inverse problem 
653 |a L2-consistency 
653 |a Lasso 
653 |a Medicare data 
653 |a missingness mechanism 
653 |a mixture regression 
653 |a model selection 
653 |a multicategory classification 
653 |a nonlocal prior 
653 |a nonparamteric boostrap 
653 |a nuisance 
653 |a penalty methods 
653 |a post-selection inference 
653 |a prediction 
653 |a proximal algorithm 
653 |a random subspaces 
653 |a regularization 
653 |a segmentation 
653 |a sparse group lasso 
653 |a sparse PCA 
653 |a stepwise regression 
653 |a strong selection consistency 
653 |a text mining 
653 |a trend analysis 
653 |a unconventional likelihood 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/79592  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/4975  |7 0  |z Open Access: DOAB, download the publication