LEADER 04560namaa2200973uu 4500
001 doab79569
003 oapen
005 20220321
006 m o d
007 cr|mn|---annan
008 220321s2022 xx |||||o ||| 0|eng d
020 |a 9783036531366 
020 |a 9783036531373 
020 |a books978-3-0365-3136-6 
024 7 |a 10.3390/books978-3-0365-3136-6  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a KCN  |2 bicssc 
072 7 |a TQK  |2 bicssc 
720 1 |a Barba, Daniela  |4 edt 
720 1 |a Barba, Daniela  |4 oth 
245 0 0 |a Catalysts and Processes for H2S Conversion to Sulfur 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (206 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Today, more stringent regulations on SOx emissions and growing environmental concerns have led to considerable attention on sulfur recovery from hydrogen sulfide (H2S). Hydrogen sulfide is commonly found in raw natural gas and biogas, even if a great amount is obtained through sweetening of sour natural gas and hydrodesulphurization of light hydrocarbons. It is highly toxic, extremely corrosive and flammable, and for these reasons, its elimination is necessary prior to emission in atmosphere. There are different technologies for the removal of H2S, the drawbacks of which are the high costs and limited H2S conversion efficiency. The main focus of this Special Issue will be on catalytic oxidation processes, but the issue is devoted to the development of catalysts able to maximize H2S conversion to sulfur minimizing SO2 formation, pursuing the goal of "zero SO2 emission".This Special Issue is particularly devoted to the preparation of novel powdered/structured supported catalysts and their physical-chemical characterization, the study of the aspects concerning stability and reusability, as well as the phenomena that could underlie the deactivation of the catalyst.This Special Issue comprises seven articles, one communication, and one review regarding the desulfurization of sour gases and fuel oil, as well as the synthesis of novel adsorbents and catalysts for H2S abatement. In the following, a brief description of the papers included in this issue is provided to serve as an outline to encourage further reading. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Environmental economics  |2 bicssc 
650 7 |a Pollution control  |2 bicssc 
650 7 |a Research & information: general  |2 bicssc 
653 |a adsorbent 
653 |a adsorption 
653 |a agricultural safety 
653 |a air pollution 
653 |a biocoal 
653 |a biogas 
653 |a BTX contaminants 
653 |a chicken eggshell 
653 |a dibenzothiophene 
653 |a dicationic ionic liquids 
653 |a direct catalytic oxidation 
653 |a elemental sulfur 
653 |a extraction 
653 |a fertilizer 
653 |a flue gas 
653 |a fluidized catalyst bed 
653 |a gas purification 
653 |a gas-tail desulfurization treatment 
653 |a Gompertz model 
653 |a H2S conversion 
653 |a H2S removal 
653 |a H2S selective partial oxidation 
653 |a hydrochar 
653 |a hydrogen sulfide 
653 |a hydrogen sulfide removal facilities 
653 |a kinetics 
653 |a livestock manure 
653 |a manganese slag 
653 |a mesoporous N-doped carbon coating 
653 |a metal ions 
653 |a mixed metal oxides 
653 |a n/a 
653 |a odor 
653 |a oxidative desulfurization 
653 |a phosphine 
653 |a polyoxometalate 
653 |a purification 
653 |a reaction mechanism 
653 |a response surface methodology (RSM) 
653 |a silicon carbide composites 
653 |a sulfur 
653 |a sulfur dioxide 
653 |a vanadium-based catalysts 
653 |a waste management 
653 |a waste valorization 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/79569  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/4949  |7 0  |z Open Access: DOAB, download the publication