Mathematical Modeling of Biological Systems Geometry, Symmetry and Conservation Laws

Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematic...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04624namaa2201021uu 4500
001 doab78761
003 oapen
005 20220224
006 m o d
007 cr|mn|---annan
008 220224s2022 xx |||||o ||| 0|eng d
020 |a 9783036527642 
020 |a 9783036527659 
020 |a books978-3-0365-2765-9 
024 7 |a 10.3390/books978-3-0365-2765-9  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
720 1 |a Papa, Federico  |4 edt 
720 1 |a Papa, Federico  |4 oth 
720 1 |a Sinisgalli, Carmela  |4 edt 
720 1 |a Sinisgalli, Carmela  |4 oth 
245 0 0 |a Mathematical Modeling of Biological Systems  |b Geometry, Symmetry and Conservation Laws 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 online resource (218 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematical models are useful descriptive tools that allow to gather the salient aspects of complex biological systems along with their fundamental governing laws, by elucidating the system behavior in time and space, also evidencing symmetry, or symmetry breaking, in geometry and morphology. Additionally, mathematical models are useful predictive tools able to reliably forecast the future system evolution or its response to specific inputs. More importantly, concerning biomedical systems, such models can even become prescriptive tools, allowing effective, sometimes optimal, intervention strategies for the treatment and control of pathological states to be planned. The application of mathematical physics, nonlinear analysis, systems and control theory to the study of biological and medical systems results in the formulation of new challenging problems for the scientific community. This Special Issue includes innovative contributions of experienced researchers in the field of mathematical modelling applied to biology and medicine. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
653 |a active particles 
653 |a Atangana-Baleanu 
653 |a bacterial growth 
653 |a batch fermentation 
653 |a bivariate probability density function 
653 |a blood microcirculation 
653 |a bounded noises 
653 |a Caputo 
653 |a confounding variables 
653 |a COVID-19 seasonality 
653 |a COVID-19 spread in Italy 
653 |a diameter 
653 |a diffusion process 
653 |a dynamical systems 
653 |a eco-epidemiology 
653 |a ecology 
653 |a enzymatic reactions 
653 |a epidemic ODE model 
653 |a Fårhæus-Lindquist effect 
653 |a Fokker-Planck equation 
653 |a forced seasonality 
653 |a global analysis 
653 |a global attractor 
653 |a information geometry 
653 |a kinetic theory 
653 |a lactic acid bacteria 
653 |a mathematical modeling 
653 |a mathematical oncology 
653 |a network optimization 
653 |a noise induced transitions 
653 |a ODE integration 
653 |a polygon area 
653 |a population dynamics 
653 |a predictive microbiology 
653 |a primary mathematical model 
653 |a quadratization 
653 |a regulatory system 
653 |a relative entropy 
653 |a Rosenzweig-MacArthur 
653 |a S.I.R. models 
653 |a stability analysis 
653 |a stand density 
653 |a statistical mechanics 
653 |a system control and identification 
653 |a systems biology 
653 |a type-1 diabetes mellitus 
653 |a ultrafiltration process 
653 |a uncertainty 
653 |a vasomotion 
653 |a Voronoi diagram 
653 |a β cells 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/78761  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/4853  |7 0  |z Open Access: DOAB, download the publication