Data-Driven Fault Detection and Reasoning for Industrial Monitoring

This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial proce...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Springer Nature 2022
Series:Intelligent Control and Learning Systems
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 02881namaa2200565uu 4500
001 doab77320
003 oapen
005 20220115
006 m o d
007 cr|mn|---annan
008 220115s2022 xx |||||o ||| 0|eng d
020 |a 978-981-16-8044-1 
020 |a 9789811680441 
024 7 |a 10.1007/978-981-16-8044-1  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a UYQ  |2 bicssc 
720 1 |a Wang, Jing  |4 aut 
720 1 |a Chen, Xiaolu  |4 aut 
720 1 |a Zhou, Jinglin  |4 aut 
245 0 0 |a Data-Driven Fault Detection and Reasoning for Industrial Monitoring 
260 |b Springer Nature  |c 2022 
300 |a 1 online resource (264 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Intelligent Control and Learning Systems 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book. 
540 |a Creative Commons  |f by/4.0/  |2 cc  |u http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Artificial intelligence  |2 bicssc 
650 7 |a Robotics  |2 bicssc 
653 |a Causal network 
653 |a Data modeling 
653 |a Data-driven methods 
653 |a Fault classification 
653 |a Fault diagnosis 
653 |a Fault reasoning 
653 |a Industrial monitoring 
653 |a Manifold learning 
653 |a Multivariate causality analysis 
653 |a Open Access 
653 |a Probabilistic graphical model 
653 |a Process monitoring 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/77320  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/52452/1/978-981-16-8044-1.pdf  |7 0  |z Open Access: DOAB, download the publication