Statistical Data Modeling and Machine Learning with Applications

The modeling and processing of empirical data is one of the main subjects and goals of statistics. Nowadays, with the development of computer science, the extraction of useful and often hidden information and patterns from data sets of different volumes and complex data sets in warehouses has been a...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05264namaa2200985uu 4500
001 doab77114
003 oapen
005 20220111
006 m o d
007 cr|mn|---annan
008 220111s2021 xx |||||o ||| 0|eng d
020 |a 9783036526928 
020 |a 9783036526935 
020 |a books978-3-0365-2693-5 
024 7 |a 10.3390/books978-3-0365-2693-5  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
720 1 |a Gocheva-Ilieva, Snezhana  |4 edt 
720 1 |a Gocheva-Ilieva, Snezhana  |4 oth 
245 0 0 |a Statistical Data Modeling and Machine Learning with Applications 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 online resource (184 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The modeling and processing of empirical data is one of the main subjects and goals of statistics. Nowadays, with the development of computer science, the extraction of useful and often hidden information and patterns from data sets of different volumes and complex data sets in warehouses has been added to these goals. New and powerful statistical techniques with machine learning (ML) and data mining paradigms have been developed. To one degree or another, all of these techniques and algorithms originate from a rigorous mathematical basis, including probability theory and mathematical statistics, operational research, mathematical analysis, numerical methods, etc. Popular ML methods, such as artificial neural networks (ANN), support vector machines (SVM), decision trees, random forest (RF), among others, have generated models that can be considered as straightforward applications of optimization theory and statistical estimation. The wide arsenal of classical statistical approaches combined with powerful ML techniques allows many challenging and practical problems to be solved. This Special Issue belongs to the section "Mathematics and Computer Science". Its aim is to establish a brief collection of carefully selected papers presenting new and original methods, data analyses, case studies, comparative studies, and other research on the topic of statistical data modeling and ML as well as their applications. Particular attention is given, but is not limited, to theories and applications in diverse areas such as computer science, medicine, engineering, banking, education, sociology, economics, among others. The resulting palette of methods, algorithms, and applications for statistical modeling and ML presented in this Special Issue is expected to contribute to the further development of research in this area. We also believe that the new knowledge acquired here as well as the applied results are attractive and useful for young scientists, doctoral students, and researchers from various scientific specialties. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
653 |a artificial neural networks 
653 |a assessment 
653 |a banking 
653 |a brain-computer interface 
653 |a breast cancer subtyping 
653 |a CART ensembles and bagging 
653 |a categorical data 
653 |a citizen science 
653 |a classification 
653 |a classification and regression tree 
653 |a clustering 
653 |a CNN-LSTM architectures 
653 |a consensus models 
653 |a convexity 
653 |a cross-validation 
653 |a dam inflow prediction 
653 |a damped Newton 
653 |a data quality 
653 |a data-adaptive kernel functions 
653 |a deep forest 
653 |a EEG motor imagery 
653 |a ensemble model 
653 |a feature selection 
653 |a Gower's interpolation formula 
653 |a Gower's metric 
653 |a hedonic prices 
653 |a housing 
653 |a hyper-parameter optimization 
653 |a image data 
653 |a input predictor selection 
653 |a kernel clustering 
653 |a kernel density estimation 
653 |a long short-term memory 
653 |a machine learning 
653 |a mathematical competency 
653 |a METABRIC dataset 
653 |a mixed data 
653 |a multi-category classifier 
653 |a multi-omics data 
653 |a multidimensional scaling 
653 |a multivariate adaptive regression splines 
653 |a n/a 
653 |a non-linear optimization 
653 |a predictive models 
653 |a quantile regression 
653 |a real-time motion imagery recognition 
653 |a similarity 
653 |a stochastic gradient descent 
653 |a support vector machine 
653 |a wavelet transform 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/77114  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/4733  |7 0  |z Open Access: DOAB, download the publication