Carbon-Based Nanomaterials for (Bio)Sensors Development

Carbon-based nanomaterials have been increasingly used in sensors and biosensors design due to their advantageous intrinsic properties, which include, but are not limited to, high electrical and thermal conductivity, chemical stability, optical properties, large specific surface, biocompatibility, a...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04961namaa2201249uu 4500
001 doab77060
003 oapen
005 20220111
006 m o d
007 cr|mn|---annan
008 220111s2021 xx |||||o ||| 0|eng d
020 |a 9783036526065 
020 |a 9783036526072 
020 |a books978-3-0365-2607-2 
024 7 |a 10.3390/books978-3-0365-2607-2  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
720 1 |a Morais, Simone  |4 edt 
720 1 |a Morais, Simone  |4 oth 
245 0 0 |a Carbon-Based Nanomaterials for (Bio)Sensors Development 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 online resource (234 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Carbon-based nanomaterials have been increasingly used in sensors and biosensors design due to their advantageous intrinsic properties, which include, but are not limited to, high electrical and thermal conductivity, chemical stability, optical properties, large specific surface, biocompatibility, and easy functionalization. The most commonly applied carbonaceous nanomaterials are carbon nanotubes (single- or multi-walled nanotubes) and graphene, but promising data have been also reported for (bio)sensors based on carbon quantum dots and nanocomposites, among others. The incorporation of carbon-based nanomaterials, independent of the detection scheme and developed platform type (optical, chemical, and biological, etc.), has a major beneficial effect on the (bio)sensor sensitivity, specificity, and overall performance. As a consequence, carbon-based nanomaterials have been promoting a revolution in the field of (bio)sensors with the development of increasingly sensitive devices. This Special Issue presents original research data and review articles that focus on (experimental or theoretical) advances, challenges, and outlooks concerning the preparation, characterization, and application of carbon-based nanomaterials for (bio)sensor development. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a 3D printing 
653 |a active carbon 
653 |a aquatic fauna 
653 |a biomimetic sensor 
653 |a biosensor 
653 |a butane 
653 |a carbon dioxide 
653 |a carbon dots 
653 |a carbon nanofibers 
653 |a carbon nanomaterials 
653 |a carbon nanotubes 
653 |a carbon-based nanomaterials 
653 |a carbon-surfaces 
653 |a chemo- and biosensor 
653 |a Cortaderia selloana 
653 |a detector 
653 |a dipicolinic acid 
653 |a dopamine 
653 |a drop-cast 
653 |a electrochemical sensors 
653 |a electrospinning 
653 |a environment 
653 |a field effect transistor 
653 |a flexible electronics 
653 |a food safety 
653 |a gas sensor 
653 |a gauge factor 
653 |a GFET 
653 |a graphene 
653 |a graphene nanoribbon 
653 |a heavy metal 
653 |a hemoglobin determination 
653 |a humidity 
653 |a hybrid nanomaterials 
653 |a lead sensor 
653 |a low-cost adsorbents 
653 |a luminescence 
653 |a metal organic framework 
653 |a MnO2 nanoflowers 
653 |a N-doped reduced graphene oxide 
653 |a n/a 
653 |a nano carbon black 
653 |a nanocomposite 
653 |a nanoparticles 
653 |a nitrogen 
653 |a non-covalent 
653 |a oxygen 
653 |a PDMS 
653 |a percolation threshold 
653 |a polydimethylsiloxane 
653 |a portable instrumentation 
653 |a pressure sensors 
653 |a propane 
653 |a Prussian blue 
653 |a ratiometric fluorescence nanoprobe 
653 |a real-time 
653 |a resistor 
653 |a room temperature phosphorescence 
653 |a schizochytrium 
653 |a sensor 
653 |a sensors and biosensors 
653 |a spectroscopic ellipsometry 
653 |a surface-enhanced Raman scattering 
653 |a Tb3+ 
653 |a ultrathin gold films 
653 |a uric acid 
653 |a voltammetric sensor 
653 |a water 
653 |a waters 
653 |a wearable electronics 
653 |a zirconia nanoparticles 
653 |a π-π stacking 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/77060  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/4678  |7 0  |z Open Access: DOAB, download the publication