Crystal Plasticity at Micro- and Nano-scale Dimensions

The present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
HMX
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 06325namaa2201609uu 4500
001 doab76797
003 oapen
005 20220111
006 m o d
007 cr|mn|---annan
008 220111s2021 xx |||||o ||| 0|eng d
020 |a 9783036508740 
020 |a 9783036508757 
020 |a books978-3-0365-0875-7 
024 7 |a 10.3390/books978-3-0365-0875-7  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
720 1 |a Armstrong, Ronald W.  |4 edt 
720 1 |a Armstrong, Ronald W.  |4 oth 
720 1 |a Elban, Wayne L.  |4 edt 
720 1 |a Elban, Wayne L.  |4 oth 
245 0 0 |a Crystal Plasticity at Micro- and Nano-scale Dimensions 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 online resource (322 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the investigation of crystal deformation properties. The ultra-small dimensional scale at which these properties are measured is shown to approach the atomic-scale level at which model dislocation mechanics descriptions of crystal slip and deformation twinning behaviors are proposed to be operative, including the achievement of atomic force microscopic measurements of dislocation pile-up interactions with crystal grain boundaries or with hard surface coatings. A special advantage of engineering designs made at such small crystal and polycrystalline dimensions is the achievement of an approximate order-of-magnitude increase in mechanical strength levels. Reasonable extrapolation of macro-scale continuum mechanics descriptions of crystal strength properties at micro- to nano-indentation hardness measurements are demonstrated, in addition to reports on persistent slip band observations and fatigue cracking behaviors. High-entropy alloy, superalloy and energetic crystal properties are reported along with descriptions of deformation rate sensitivities, grain boundary structures, nano-cutting, void nucleation/growth micromechanics and micro-composite electrical properties. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a ab initio calculations 
653 |a activation volume 
653 |a alloys 
653 |a anisotropic elasticity 
653 |a anode 
653 |a B2 phase 
653 |a BCC Fe nanowires 
653 |a bi-crystal 
653 |a cohesive strength 
653 |a compression 
653 |a conversion reaction 
653 |a copper single crystal 
653 |a crack growth 
653 |a cracking 
653 |a crystal plasticity simulations 
653 |a crystal plasticity theory 
653 |a crystal size dependencies 
653 |a crystal strength 
653 |a crystallographic slip 
653 |a cutting theory 
653 |a cyclic deformation 
653 |a de-twinning 
653 |a discrete dislocation pile-up 
653 |a dislocation 
653 |a dislocation emission 
653 |a dislocation models 
653 |a dislocation plasticity 
653 |a dislocations 
653 |a elastic properties 
653 |a fatigue 
653 |a fatigue crack initiation 
653 |a FeCrAl 
653 |a fracture 
653 |a fracture mechanics 
653 |a free surface 
653 |a geometrically necessary dislocations 
653 |a grain boundaries 
653 |a grain boundary 
653 |a grain growth 
653 |a Hall-Petch relation 
653 |a hardness 
653 |a HMX 
653 |a hydrogen embrittlement 
653 |a in situ electron microscopy 
653 |a IN718 alloy 
653 |a indentation creep 
653 |a indentation size effect 
653 |a interfacial delamination 
653 |a intermetallic compounds 
653 |a internal stress 
653 |a internal stresses 
653 |a iron 
653 |a kitagawa-takahashi diagram 
653 |a lattice distortive transformations 
653 |a linear complexions 
653 |a lithium ion battery 
653 |a magnesium 
653 |a mechanical property 
653 |a metals and alloys 
653 |a micro-crystals 
653 |a micro-pillar 
653 |a micromechanical testing 
653 |a micropillar 
653 |a miniaturised testing 
653 |a molecular dynamics 
653 |a molecular dynamics simulation 
653 |a molecular dynamics simulations 
653 |a multiaxial loading 
653 |a nano-crystals 
653 |a nano-indentation 
653 |a nano-polycrystals 
653 |a nano-wires 
653 |a nanocrystalline 
653 |a nanocutting 
653 |a nanoflower 
653 |a nanomaterials 
653 |a nucleation 
653 |a persistent slip band 
653 |a phase-field simulation 
653 |a pile-ups 
653 |a pillars 
653 |a rafting behavior 
653 |a rapid solidification 
653 |a size effect 
653 |a strain hardening 
653 |a strain hardening behavior 
653 |a strain rate 
653 |a strain rate sensitivity 
653 |a strength 
653 |a surface hard coating 
653 |a synchrotron radiation X-ray diffraction 
653 |a temperature effect 
653 |a theoretical model 
653 |a thermal stability 
653 |a tin sulfide 
653 |a twin boundaries 
653 |a twinning 
653 |a ultrafine-grained materials 
653 |a void formation 
653 |a whiskers 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/76797  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/4246  |7 0  |z Open Access: DOAB, download the publication