Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management

The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management.

Bibliographic Details
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
CWP
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 03708namaa2201105uu 4500
001 doab76675
003 oapen
005 20220111
006 m o d
007 cr|mn|---annan
008 220111s2021 xx |||||o ||| 0|eng d
020 |a 9783036517193 
020 |a 9783036517209 
020 |a books978-3-0365-1719-3 
024 7 |a 10.3390/books978-3-0365-1719-3  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
720 1 |a Kisi, Ozgur  |4 edt 
720 1 |a Kisi, Ozgur  |4 oth 
245 0 0 |a Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 online resource (238 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
653 |a additive regression 
653 |a artificial intelligence 
653 |a artificial neural network 
653 |a atmospheric reanalysis 
653 |a bagging 
653 |a Bayesian model averaging 
653 |a big data 
653 |a calibration 
653 |a CWP 
653 |a dagging 
653 |a Daymet V3 
653 |a EEFlux 
653 |a ensemble modeling 
653 |a extension principle 
653 |a flood routing 
653 |a fuzzy sets and systems 
653 |a Google Earth Engine 
653 |a Govindpur 
653 |a groundwater 
653 |a groundwater level prediction 
653 |a hydroinformatics 
653 |a hydrologic model 
653 |a improved extreme learning machine (IELM) 
653 |a irrigation performance 
653 |a Kernel extreme learning machines 
653 |a M5 model tree 
653 |a machine learning 
653 |a multivariate adaptive regression spline 
653 |a Muskingum method 
653 |a n/a 
653 |a NDVI 
653 |a neural network 
653 |a nitrogen compound 
653 |a nitrogen prediction 
653 |a non-linear modeling 
653 |a PACF 
653 |a particle swarm optimization 
653 |a prediction intervals 
653 |a prediction models 
653 |a principal component analysis 
653 |a random subspace 
653 |a rotation forest 
653 |a satellite precipitation 
653 |a sensitivity analysis 
653 |a shortwave radiation flux density 
653 |a South Korea 
653 |a spatiotemporal variation 
653 |a streamflow forecasting 
653 |a streamflow simulation 
653 |a support vector machine 
653 |a sustainability 
653 |a sustainable development 
653 |a SVM-LF 
653 |a SVM-RF 
653 |a uncertainty 
653 |a uncertainty analysis 
653 |a ungauged basin 
653 |a WANN 
653 |a water conservation 
653 |a water resources 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/76675  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/4122  |7 0  |z Open Access: DOAB, download the publication