LEADER 04470namaa2201009uu 4500
001 doab76656
003 oapen
005 20220111
006 m o d
007 cr|mn|---annan
008 220111s2021 xx |||||o ||| 0|eng d
020 |a 9783036517377 
020 |a 9783036517384 
020 |a books978-3-0365-1737-7 
024 7 |a 10.3390/books978-3-0365-1737-7  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
720 1 |a Carrasco, Gary  |4 edt 
720 1 |a Carrasco, Gary  |4 oth 
245 0 0 |a Biocomposite Inks for 3D Printing 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 online resource (213 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Three-dimensional (3D) printing has evolved massively during the last years. The 3D printing technologies offer various advantages, including: i) tailor-made design, ii) rapid prototyping, and iii) manufacturing of complex structures. Importantly, 3D printing is currently finding its potential in tissue engineering, wound dressings, tissue models for drug testing, prosthesis, and biosensors, to name a few. One important factor is the optimized composition of inks that can facilitate the deposition of cells, fabrication of vascularized tissue and the structuring of complex constructs that are similar to functional organs. Biocomposite inks can include synthetic and natural polymers, such as poly (ε-caprolactone), polylactic acid, collagen, hyaluronic acid, alginate, nanocellulose, and may be complemented with cross-linkers to stabilize the constructs and with bioactive molecules to add functionality. Inks that contain living cells are referred to as bioinks and the process as 3D bioprinting. Some of the key aspects of the formulation of bioinks are, e.g., the tailoring of mechanical properties, biocompatibility and the rheological behavior of the ink which may affect the cell viability, proliferation, and cell differentiation.The current Special Issue emphasizes the bio-technological engineering of novel biocomposite inks for various 3D printing technologies, also considering important aspects in the production and use of bioinks. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
653 |a 3D bioprinting 
653 |a 3D cell culture 
653 |a 3D printing 
653 |a absorption 
653 |a additive manufacturing 
653 |a artificial limb 
653 |a bacteria biofabrication 
653 |a bacterial nanocellulose 
653 |a bioactive scaffold 
653 |a biocomposite 
653 |a biocomposite ink 
653 |a biofabrication 
653 |a bioink 
653 |a bioinks 
653 |a biomanufacturing 
653 |a biomedicine 
653 |a bioprinting 
653 |a cancer 
653 |a cancer stemness 
653 |a carboxylated agarose 
653 |a cellulose 
653 |a cellulose nanocrystals 
653 |a cellulose nanofibrils 
653 |a clinical translational 
653 |a CNF 
653 |a collagen 
653 |a cytotoxicity 
653 |a drug delivery 
653 |a ECM 
653 |a extracellular matrix 
653 |a fibrils 
653 |a forest-based MFC 
653 |a free-standing 
653 |a fused deposition modeling (FDM) 
653 |a growth factor cocktail 
653 |a human nasal chondrocytes 
653 |a hydrogel 
653 |a hydrogels 
653 |a n/a 
653 |a nanocellulose 
653 |a physical cross-linking 
653 |a pine sawdust 
653 |a polyhydroxyalkanoates 
653 |a printability 
653 |a probiotic food 
653 |a scaffolds 
653 |a soda ethanol pulping 
653 |a tissue engineering 
653 |a tubular organ 
653 |a tubular tissue 
653 |a vessel stenting 
653 |a wound dressings 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/76656  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/4103  |7 0  |z Open Access: DOAB, download the publication