LEADER 03897namaa2200865uu 4500
001 doab76576
003 oapen
005 20220111
006 m o d
007 cr|mn|---annan
008 220111s2021 xx |||||o ||| 0|eng d
020 |a 9783036511689 
020 |a 9783036511696 
020 |a books978-3-0365-1169-6 
024 7 |a 10.3390/books978-3-0365-1169-6  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
720 1 |a Kjelstrup, Signe  |4 edt 
720 1 |a Kjelstrup, Signe  |4 oth 
245 0 0 |a Nanoscale Thermodynamics 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 online resource (168 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This Special Issue concerns the development of a theory for energy conversion on the nanoscale, namely, nanothermodynamics. The theory has been applied to porous media, small surfaces, clusters or fluids under confinement. The number of unsolved issues in these contexts is numerous and the present efforts are only painting part of the broader picture. We attempt to answer the following: How far down in scale does the Gibbs equation apply? Which theory can replace it beyond the thermodynamic limit? It is well known that confinement changes the equation of state of a fluid, but how does confinement change the equilibrium conditions themselves? This Special Issue explores some of the roads that were opened up for us by Hill with the idea of nanothermodynamics. The experimental progress in nanotechnology is advancing rapidly. It is our ambition with this book to inspire an increased effort in the development of suitable theoretical tools and methods to help further progress in nanoscience. All ten contributions to this Special Issue can be seen as efforts to support, enhance and validate the theoretical foundation of Hill. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a activated carbon 
653 |a adsorption 
653 |a confinement 
653 |a differential pressure 
653 |a entropy of adsorption 
653 |a equilibrium 
653 |a finite size correction 
653 |a high-pressure methane adsorption 
653 |a Hill's thermodynamics of small systems 
653 |a hills-thermodynamics 
653 |a hydration shell thermodynamics 
653 |a ideal gas 
653 |a integral pressure 
653 |a interface 
653 |a Kirkwood-Buff integrals 
653 |a molecular dynamics 
653 |a molecular simulation 
653 |a n/a 
653 |a nanoparticles 
653 |a nanopore 
653 |a nanothermodynamics 
653 |a polymers 
653 |a pore 
653 |a porous media 
653 |a porous systems 
653 |a pressure 
653 |a single-molecule stretching 
653 |a size-dependent 
653 |a small system method 
653 |a small-system 
653 |a spreading pressure 
653 |a statistical mechanics 
653 |a surface effects 
653 |a temperature-dependent energy levels 
653 |a thermodynamic 
653 |a thermodynamics 
653 |a thermodynamics at strong coupling 
653 |a thermodynamics of adsorption systems 
653 |a thermodynamics of small systems 
653 |a thin film 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/76576  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/4021  |7 0  |z Open Access: DOAB, download the publication