Forest Fire Risk Prediction

Globally, fire regimes are being altered by changing climatic conditions and land use changes. This has the potential to drive species extinctions and cause ecosystem state changes, with a range of consequences for ecosystem services. Accurate prediction of the risk of forest fires over short timesc...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
MNI
n/a
RCP
SSR
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05073namaa2201297uu 4500
001 doab76454
003 oapen
005 20220111
006 m o d
007 cr|mn|---annan
008 220111s2021 xx |||||o ||| 0|eng d
020 |a 9783036514734 
020 |a 9783036514741 
020 |a books978-3-0365-1473-4 
024 7 |a 10.3390/books978-3-0365-1473-4  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a KNAL  |2 bicssc 
072 7 |a PS  |2 bicssc 
720 1 |a Nolan, Rachael  |4 edt 
720 1 |a Nolan, Rachael  |4 oth 
720 1 |a Resco de Dios, Víctor  |4 edt 
720 1 |a Resco de Dios, Víctor  |4 oth 
245 0 0 |a Forest Fire Risk Prediction 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 online resource (235 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Globally, fire regimes are being altered by changing climatic conditions and land use changes. This has the potential to drive species extinctions and cause ecosystem state changes, with a range of consequences for ecosystem services. Accurate prediction of the risk of forest fires over short timescales (weeks or months) is required for land managers to target suppression resources in order to protect people, property, and infrastructure, as well as fire-sensitive ecosystems. Over longer timescales, prediction of changes in forest fire regimes is required to model the effect of wildfires on the terrestrial carbon cycle and subsequent feedbacks into the climate system.This was the motivation to publish this book, which is focused on quantifying and modelling the risk factors of forest fires. More specifically, the chapters in this book address four topics: (i) the use of fire danger metrics and other approaches to understand variation in wildfire activity; (ii) understanding changes in the flammability of live fuel; (iii) modeling dead fuel moisture content; and (iv) estimations of emission factors.The book will be of broad relevance to scientists and managers working with fire in different forest ecosystems globally. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Biology, life sciences  |2 bicssc 
650 7 |a Forestry & related industries  |2 bicssc 
650 7 |a Research & information: general  |2 bicssc 
653 |a acid rain 
653 |a aerosol 
653 |a alien pathogen 
653 |a allochthonous species 
653 |a biomass burning 
653 |a canopy bulk density 
653 |a China 
653 |a climate change 
653 |a critical LFMC threshold 
653 |a crown fire 
653 |a Cupressus sempervirens 
653 |a direct estimation 
653 |a disease 
653 |a drought 
653 |a drying tests 
653 |a epicormic resprouter 
653 |a eucalyptus 
653 |a fire behavior 
653 |a fire danger 
653 |a fire danger rating 
653 |a fire management 
653 |a fire modeling 
653 |a fire regime 
653 |a fire risk 
653 |a fire season 
653 |a fire severity 
653 |a fire size 
653 |a fire weather 
653 |a fire weather patterns 
653 |a flammability 
653 |a flammability feedbacks 
653 |a foliar moisture content 
653 |a forest fire 
653 |a forest fire driving factors 
653 |a forest fire management 
653 |a forest fire occurrence 
653 |a forest/grassland fire 
653 |a fuel moisture 
653 |a fuel moisture content 
653 |a fuels 
653 |a FWI system 
653 |a humidity diffusion coefficients 
653 |a introduced fungus 
653 |a leaf water potential 
653 |a machine learning 
653 |a mass loss calorimeter 
653 |a meteorological factor regression 
653 |a MNI 
653 |a modeling 
653 |a moisture content 
653 |a n/a 
653 |a occurrence of forest fire 
653 |a plant traits 
653 |a PM2.5 
653 |a Portugal 
653 |a prediction accuracy 
653 |a prescribed burning 
653 |a radiative transfer model 
653 |a random forest 
653 |a RCP 
653 |a remote sensing 
653 |a Seiridium cardinale 
653 |a senescence 
653 |a southwest China 
653 |a SSR 
653 |a temperate forest 
653 |a time lag 
653 |a variable importance 
653 |a vulnerability to wildfires 
653 |a wildfire 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/76454  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/3890  |7 0  |z Open Access: DOAB, download the publication