Operationalization of Remote Sensing Solutions for Sustainable Forest Management

The great potential of remote sensing technologies for operational use in sustainable forest management is addressed in this book, which is the reprint of papers published in the Remote Sensing Special Issue "Operationalization of Remote Sensing Solutions for Sustainable Forest Management"...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
DEM
GIS
n/a
UAV
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05437namaa2201417uu 4500
001 doab76364
003 oapen
005 20220111
006 m o d
007 cr|mn|---annan
008 220111s2021 xx |||||o ||| 0|eng d
020 |a 9783036509822 
020 |a 9783036509839 
020 |a books978-3-0365-0983-9 
024 7 |a 10.3390/books978-3-0365-0983-9  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
720 1 |a Mozgeris, Gintautas  |4 edt 
720 1 |a Balenović, Ivan  |4 edt 
720 1 |a Balenović, Ivan  |4 oth 
720 1 |a Mozgeris, Gintautas  |4 oth 
245 0 0 |a Operationalization of Remote Sensing Solutions for Sustainable Forest Management 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 online resource (296 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The great potential of remote sensing technologies for operational use in sustainable forest management is addressed in this book, which is the reprint of papers published in the Remote Sensing Special Issue "Operationalization of Remote Sensing Solutions for Sustainable Forest Management". The studies come from three continents and cover multiple remote sensing systems (including terrestrial mobile laser scanning, unmanned aerial vehicles, airborne laser scanning, and satellite data acquisition) and a diversity of data processing algorithms, with a focus on machine learning approaches. The focus of the studies ranges from identification and characterization of individual trees to deriving national- or even continental-level forest attributes and maps. There are studies carefully describing exercises on the case study level, and there are also studies introducing new methodologies for transdisciplinary remote sensing applications. Even though most of the authors look forward to continuing their research, nearly all studies introduced are ready for operational use or have already been implemented in practical forestry. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
653 |a accuracy assessment 
653 |a airborne laser scanning 
653 |a analytic hierarchy process 
653 |a anthropogenic 
653 |a Artic 
653 |a bark beetle 
653 |a bark beetle infestation 
653 |a beech-fir forests 
653 |a canopy gaps 
653 |a canopy openings percentage 
653 |a change detection 
653 |a damage mapping 
653 |a deep learning 
653 |a deforestation depletion 
653 |a DEM 
653 |a DJI drone 
653 |a earth observations 
653 |a efficiency 
653 |a Elastic Net 
653 |a forest canopy 
653 |a forest classification 
653 |a forest damage 
653 |a forest disturbance 
653 |a forest inventory 
653 |a forest management 
653 |a forest mask 
653 |a forest monitoring 
653 |a forest road inventory 
653 |a forested catchment 
653 |a forestry 
653 |a GIS 
653 |a global navigation satellite system 
653 |a gray level cooccurrence matrix (GLCM) 
653 |a growing stock volume 
653 |a harmonic regression 
653 |a hydrological modeling 
653 |a Ips typographus L. 
653 |a Landsat 
653 |a landsat time series 
653 |a Large Scale Mean-Shift Segmentation (LSMS) 
653 |a machine learning 
653 |a mangrove 
653 |a mangrove sustainability 
653 |a MaxENT 
653 |a multi-scale analysis 
653 |a multi-temporal regression 
653 |a multispectral imagery 
653 |a n/a 
653 |a national forest inventory 
653 |a natural water balance 
653 |a pest 
653 |a phenology modelling 
653 |a Phoracantha spp. 
653 |a pixel-based supervised classification 
653 |a point cloud 
653 |a positional accuracy 
653 |a precision density 
653 |a principal component analysis (PCA) 
653 |a probability sampling 
653 |a random forest 
653 |a Random Forest (RF) 
653 |a remote sensing 
653 |a replanting 
653 |a restoration 
653 |a risk modeling 
653 |a satellite imagery 
653 |a satellite indices 
653 |a Sentinel-2 
653 |a Siberia 
653 |a Southeast Asia 
653 |a spruce 
653 |a stand volume 
653 |a support vector machine 
653 |a SWAT model 
653 |a thresholding analysis 
653 |a time series analysis 
653 |a total station 
653 |a UAV 
653 |a unmanned aerial vehicle (UAV) 
653 |a validation 
653 |a vegetation index 
653 |a wildfires 
653 |a WorldView-3 
653 |a Yakutia 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/76364  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/3789  |7 0  |z Open Access: DOAB, download the publication