LEADER 04411namaa2200733uu 4500
001 doab70780
003 oapen
006 m o d
007 cr|mn|---annan
008 ||||||||s2021 xx |||||o ||| engng d
020 |a 978-981-16-2881-8 
020 |a 9789811628818 
024 7 |a 10.1007/978-981-16-2881-8  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a UB  |2 bicssc 
072 7 |a UMB  |2 bicssc 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQ  |2 bicssc 
072 7 |a UYQL  |2 bicssc 
720 1 |a Chen, Chung-Chi  |4 aut 
720 1 |a Chen, Hsin-Hsi  |4 aut 
720 1 |a Huang, Hen-Hsen  |4 aut 
245 0 0 |a From Opinion Mining to Financial Argument Mining 
260 |b Springer Nature  |c 2021 
300 |a 1 online resource (95 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in Computer Science 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Opinion mining is a prevalent research issue in many domains. In the financial domain, however, it is still in the early stages. Most of the researches on this topic only focus on the coarse-grained market sentiment analysis, i.e., 2-way classification for bullish/bearish. Thanks to the recent financial technology (FinTech) development, some interdisciplinary researchers start to involve in the in-depth analysis of investors' opinions. These works indicate the trend toward fine-grained opinion mining in the financial domain. When expressing opinions in finance, terms like bullish/bearish often spring to mind. However, the market sentiment of the financial instrument is just one type of opinion in the financial industry. Like other industries such as manufacturing and textiles, the financial industry also has a large number of products. Financial services are also a major business for many financial companies, especially in the context of the recent FinTech trend. For instance, many commercial banks focus on loans and credit cards. Although there are a variety of issues that could be explored in the financial domain, most researchers in the AI and NLP communities only focus on the market sentiment of the stock or foreign exchange. This open access book addresses several research issues that can broaden the research topics in the AI community. It also provides an overview of the status quo in fine-grained financial opinion mining to offer insights into the futures goals. For a better understanding of the past and the current research, it also discusses the components of financial opinions one-by-one with the related works and highlights some possible research avenues, providing a research agenda with both micro- and macro-views toward financial opinions. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Algorithms and data structures  |2 bicssc 
650 7 |a Artificial intelligence  |2 bicssc 
650 7 |a Data mining  |2 bicssc 
650 7 |a Information technology: general topics  |2 bicssc 
650 7 |a Natural language and machine translation  |2 bicssc 
653 |a Algorithms & data structures 
653 |a argument mining in finance 
653 |a Artificial Intelligence 
653 |a Computer and Information Systems Applications 
653 |a Computer Applications 
653 |a Data mining 
653 |a Data Mining and Knowledge Discovery 
653 |a Data Science 
653 |a Data Structures and Information Theory 
653 |a Expert systems / knowledge-based systems 
653 |a financial opinion mining 
653 |a financial technology application 
653 |a FinTech 
653 |a Information technology: general issues 
653 |a Information theory 
653 |a Natural language & machine translation 
653 |a Natural Language Processing (NLP) 
653 |a numeral understanding 
653 |a Open Access 
653 |a opinion quality evaluation 
653 |a text mining in finance 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/70780  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/49533/1/9789811628818.pdf  |7 0  |z Open Access: DOAB, download the publication