Chapter AI for Improving the Overall Equipment Efficiency in Manufacturing Industry

Industry 4.0 has emerged as the perfect scenario for boosting the application of novel artificial intelligence (AI) and machine learning (ML) solutions to industrial process monitoring and optimization. One of the key elements on this new industrial revolution is the hatching of massive process moni...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: InTechOpen 2020
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 02806namaa2200397uu 4500
001 doab70415
003 oapen
006 m o d
007 cr|mn|---annan
008 ||||||||s2020 xx |||||o ||| engng d
020 |a intechopen.89967 
024 7 |a 10.5772/intechopen.89967  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a KN  |2 bicssc 
720 1 |a Echeverria, Lluis  |4 aut 
720 1 |a Anzaldi, Gabriel  |4 aut 
720 1 |a Bonada, Francesc  |4 aut 
720 1 |a Domingo, Xavier  |4 aut 
245 0 0 |a Chapter AI for Improving the Overall Equipment Efficiency in Manufacturing Industry 
260 |b InTechOpen  |c 2020 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Industry 4.0 has emerged as the perfect scenario for boosting the application of novel artificial intelligence (AI) and machine learning (ML) solutions to industrial process monitoring and optimization. One of the key elements on this new industrial revolution is the hatching of massive process monitoring data, enabled by the cyber-physical systems (CPS) distributed along the manufacturing processes, the proliferation of hybrid Internet of Things (IoT) architectures supported by polyglot data repositories, and big (small) data analytics capabilities. Industry 4.0 paradigm is data-driven, where the smart exploitation of data is providing a large set of competitive advantages impacting productivity, quality, and efficiency key performance indicators (KPIs). Overall equipment efficiency (OEE) has emerged as the target KPI for most manufacturing industries due to the fact that considers three key indicators: availability, quality, and performance. This chapter describes how different AI and ML solutions can enable a big step forward in industrial process control, focusing on OEE impact illustrated by means of real use cases and research project results. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |u https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Industry & industrial studies  |2 bicssc 
653 |a machine learning, supervised learning, unsupervised learning, classification, regression, ensembles, artificial intelligence, data mining, data-driven, industry 4.0, smart manufacturing, cyber-physical systems, predictive analytics 
773 1 |7 nnaa 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/70415  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/49361/1/69975.pdf  |7 0  |z Open Access: DOAB, download the publication