Fractional Differential Equations, Inclusions and Inequalities with Applications

During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, visc...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 07279namaa2201717uu 4500
001 doab69271
003 oapen
005 20210501
006 m o d
007 cr|mn|---annan
008 210501s2020 xx |||||o ||| 0|eng d
020 |a 9783039432189 
020 |a 9783039432196 
020 |a books978-3-03943-219-6 
024 7 |a 10.3390/books978-3-03943-219-6  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a P  |2 bicssc 
720 1 |a Ntouyas, Sotiris K.  |4 edt 
720 1 |a Ntouyas, Sotiris K.  |4 oth 
245 0 0 |a Fractional Differential Equations, Inclusions and Inequalities with Applications 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 online resource (518 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Mathematics & science  |2 bicssc 
650 7 |a Research & information: general  |2 bicssc 
653 |a anti-periodic boundary value problems 
653 |a arbitrary order differential equations 
653 |a boundary value problem 
653 |a caputo fractional derivative 
653 |a Caputo fractional derivative 
653 |a Caputo-Fabrizio fractional differential equations 
653 |a caputo-type fractional derivative 
653 |a Caputo-type fractional derivative 
653 |a Caputo's fractional derivative 
653 |a condensing multivalued map 
653 |a conformable derivative 
653 |a conformable double Laplace decomposition method 
653 |a conformable fractional calculus 
653 |a conformable Laplace transform 
653 |a conformable partial derivative 
653 |a continuous dependence 
653 |a convergence estimates 
653 |a convex function 
653 |a convex functions 
653 |a coupled system 
653 |a coupled system of fractional difference equations 
653 |a differential inclusions 
653 |a discrete half-line 
653 |a distributed delay 
653 |a existence 
653 |a existence and uniqueness of solution 
653 |a existence of solutions 
653 |a existence theory 
653 |a exponential kernel 
653 |a exponentially convex function 
653 |a fixed point 
653 |a fixed point theorem 
653 |a fixed-point theorems 
653 |a fractal space 
653 |a fractional bennett's inequality 
653 |a fractional calculus 
653 |a fractional copson's inequality 
653 |a fractional derivative 
653 |a fractional derivatives 
653 |a fractional differential equation 
653 |a fractional differential inclusions 
653 |a fractional evolution inclusions 
653 |a fractional hardy's inequality 
653 |a fractional hölder inequality 
653 |a fractional integral 
653 |a fractional integral inequalities 
653 |a fractional integrals 
653 |a fractional leindler's inequality 
653 |a fractional q-difference inclusion 
653 |a fractional sum 
653 |a fractional sum-difference equations 
653 |a functional fractional differential inclusions 
653 |a generalized fractional integral 
653 |a generalized Liouville-Caputo derivative 
653 |a generalized Riemann-liouville fractional integrals 
653 |a green function 
653 |a Green's function 
653 |a Hadamard fractional derivative 
653 |a hadamard proportional fractional integrals 
653 |a Hermite-Hadamard inequalities 
653 |a Hermite-Hadamard inequality 
653 |a Hermite-Hadamard type inequalities 
653 |a Hermite-Hadamard-type inequalities 
653 |a HU stability 
653 |a Hyers-Ulam stability 
653 |a ill-posed problem 
653 |a impulses 
653 |a inequalities 
653 |a integral representation 
653 |a integro-multipoint boundary conditions 
653 |a interval-valued functions 
653 |a inverse problem 
653 |a iterative method 
653 |a Katugampola fractional integrals 
653 |a Langevin equation 
653 |a matrix theory 
653 |a measure of noncompactness 
653 |a mild solutions 
653 |a multiple positive solution 
653 |a neutral fractional systems 
653 |a non-instantaneous impulsive equations 
653 |a nonlocal 
653 |a nonlocal boundary conditions 
653 |a nonlocal fractional delta-nabla sum boundary value problem 
653 |a Ostrowski type inequality 
653 |a Perov-type fixed point theorem 
653 |a positive solution 
653 |a positive solutions 
653 |a positivity of solution 
653 |a proportional fractional integrals 
653 |a q-integro-difference equation 
653 |a Qi inequality 
653 |a random impulsive and junction points 
653 |a Riemann-Liouville fractional integral 
653 |a Riemann-Liouville fractional integrals 
653 |a Riemann-Liouville type fractional problem 
653 |a s-convex function 
653 |a sequential fractional delta-nabla sum-difference equations 
653 |a singular one dimensional coupled Burgers' equation 
653 |a solution 
653 |a stability theory 
653 |a the index of fixed point 
653 |a the method of lower and upper solutions 
653 |a three-point boundary-value problem 
653 |a time-fractional diffusion equation 
653 |a timescales 
653 |a Ulam-Hyers stability 
653 |a uniqueness 
653 |a ψ-Riesz-Caputo derivative 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/69271  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/3060  |7 0  |z Open Access: DOAB, download the publication