LEADER 03490namaa2200781uu 4500
001 doab69000
003 oapen
005 20210501
006 m o d
007 cr|mn|---annan
008 210501s2020 xx |||||o ||| 0|eng d
020 |a 9783039368204 
020 |a 9783039368211 
020 |a books978-3-03936-821-1 
024 7 |a 10.3390/books978-3-03936-821-1  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
720 1 |a Leonowicz, Zbigniew  |4 edt 
720 1 |a Leonowicz, Zbigniew  |4 oth 
245 0 0 |a Signal Analysis in Power Systems 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 online resource (118 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The analysis of power systems under various conditions represents one of the most important and complex tasks in electrical power engineering. Studies in this area are necessary to ensure that the reliability, efficiency, and stability of the power system is not adversely affected. This issue is devoted to reviews and applications of modern methods of signal processing used to analyze the operation of a power system and evaluate the performance of the system in all aspects. Smart grids as an emerging research field of the current decade is the focus of this issue. Monitoring capability with data integration, advanced analysis of support system control, enhanced power security and effective communication to meet the power demand, efficient energy consumption and minimum costs, and intelligent interaction between power-generating and -consuming devices depends on the selection and implementation of advanced signal analysis and processing techniques. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering and technology  |2 bicssc 
653 |a business model 
653 |a cluster analysis 
653 |a CNN-LSTM 
653 |a connection harmonization 
653 |a convolutional neural networks 
653 |a data mining 
653 |a different working conditions 
653 |a distributed energy resources 
653 |a distributed generation 
653 |a economic efficiency 
653 |a electrical power network 
653 |a energy storage systems 
653 |a failures 
653 |a forecasting 
653 |a global power quality index 
653 |a grid codes 
653 |a information recognition 
653 |a mining industry 
653 |a multi-headed CNN 
653 |a obtaining information 
653 |a power quality 
653 |a power supply outages 
653 |a power supply restoration 
653 |a power systems 
653 |a prosumer 
653 |a renewable energy 
653 |a sensitivity analysis 
653 |a sliding window 
653 |a smart grids 
653 |a solar output 
653 |a time intervals 
653 |a virtual power plant 
653 |a ward algorithm 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/69000  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/2768  |7 0  |z Open Access: DOAB, download the publication