LEADER 04439namaa2200985uu 4500
001 doab68649
003 oapen
005 20210501
006 m o d
007 cr|mn|---annan
008 210501s2020 xx |||||o ||| 0|eng d
020 |a 9783039363940 
020 |a 9783039363957 
020 |a books978-3-03936-395-7 
024 7 |a 10.3390/books978-3-03936-395-7  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
720 1 |a De Pascale, Andrea  |4 edt 
720 1 |a De Pascale, Andrea  |4 oth 
245 0 0 |a Organic Rankine Cycle for Energy Recovery System 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 online resource (192 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The rising trend in the global energy demand poses new challenges to humankind. The energy and mechanical engineering sectors are called to develop new and more environmentally friendly solutions to harvest residual energy from primary production processes. The Organic Rankine Cycle (ORC) is an emerging energy system for power production and waste heat recovery. In the near future, this technology can play an increasing role within the energy generation sectors and can help achieve the carbon footprint reduction targets of many industrial processes and human activities. This Special Issue focuses on selected research and application cases of ORC-based waste heat recovery solutions. Topics included in this publication cover the following aspects: performance modeling and optimization of ORC systems based on pure and zeotropic mixture working fluids; applications of waste heat recovery via ORC to gas turbines and reciprocating engines; optimal sizing and operation of ORC under combined heat and power and district heating application; the potential of ORC on board ships and related issues; life cycle analysis for biomass application; ORC integration with supercritical CO2 cycle; and the proper design of the main ORC components, including fluid dynamics issues. The current state of the art is considered and some cutting-edge ORC technology research activities are examined in this book. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering and technology  |2 bicssc 
653 |a advanced thermodynamic cycles 
653 |a benzene 
653 |a biomass 
653 |a Brayton 
653 |a carbon footprint of energy production 
653 |a cavitation 
653 |a CFD 
653 |a CHP 
653 |a cogeneration 
653 |a CoolFOAM 
653 |a cyclopentane 
653 |a decentralised energy systems 
653 |a district heating 
653 |a dynamic analysis 
653 |a energy analysis 
653 |a environmental impact 
653 |a exergy 
653 |a exergy analysis 
653 |a expander 
653 |a gear pump 
653 |a heat exchanger 
653 |a internal combustion engine 
653 |a life cycle analysis 
653 |a life cycle assessment 
653 |a low grade heat 
653 |a low sulfur fuels 
653 |a machinery system optimization 
653 |a mesh morphing 
653 |a method comparison 
653 |a micro-ORC 
653 |a natural gas engine 
653 |a OpenFOAM 
653 |a opensource CFD 
653 |a ORC 
653 |a ORC integration technologies 
653 |a organic Rankine cycle 
653 |a organic Rankine cycle system 
653 |a performance parameters 
653 |a positive displacement machine 
653 |a predictive model 
653 |a pressure pulsation 
653 |a regression model 
653 |a scroll 
653 |a ship 
653 |a techno-economic feasibility 
653 |a thermodynamic optimization 
653 |a toluene 
653 |a waste heat recovery 
653 |a WOM 
653 |a zeotropic mixture 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/68649  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/2411  |7 0  |z Open Access: DOAB, download the publication