Recent Investigations of Differential and Fractional Equations and Inclusions

During the past decades, the subject of calculus of integrals and derivatives of any arbitrary real or complex order has gained considerable popularity and impact. This is mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. In c...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04567namaa2200973uu 4500
001 doab68395
003 oapen
005 20210501
006 m o d
007 cr|mn|---annan
008 210501s2021 xx |||||o ||| 0|eng d
020 |a 9783036500744 
020 |a 9783036500751 
020 |a books978-3-0365-0075-1 
024 7 |a 10.3390/books978-3-0365-0075-1  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a P  |2 bicssc 
720 1 |a Hristova, Snezhana  |4 edt 
720 1 |a Hristova, Snezhana  |4 oth 
245 0 0 |a Recent Investigations of Differential and Fractional Equations and Inclusions 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 online resource (190 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a During the past decades, the subject of calculus of integrals and derivatives of any arbitrary real or complex order has gained considerable popularity and impact. This is mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. In connection with this, great importance is attached to the publication of results that focus on recent and novel developments in the theory of any types of differential and fractional differential equation and inclusions, especially covering analytical and numerical research for such kinds of equations. This book is a compilation of articles from a Special Issue of Mathematics devoted to the topic of "Recent Investigations of Differential and Fractional Equations and Inclusions". It contains some theoretical works and approximate methods in fractional differential equations and inclusions as well as fuzzy integrodifferential equations. Many of the papers were supported by the Bulgarian National Science Fund under Project KP-06-N32/7. Overall, the volume is an excellent witness of the relevance of the theory of fractional differential equations. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Mathematics and Science  |2 bicssc 
650 7 |a Research and information: general  |2 bicssc 
653 |a alpha-model 
653 |a asymptotically constant matrices 
653 |a Banach spaces 
653 |a Caputo derivative 
653 |a Clark's theorem 
653 |a complete metric space 
653 |a delay 
653 |a dissipativity 
653 |a double fuzzy Sumudu transform 
653 |a eigenvalues method 
653 |a essential maps 
653 |a existence 
653 |a exponential dichotomy 
653 |a fixed point 
653 |a fixed point theorem 
653 |a Fourier-Laplace transforms 
653 |a fourth-order p-Laplacian differential equations 
653 |a fractional derivative 
653 |a fractional differential equations 
653 |a fractional Navier-Stokes equations 
653 |a fractional time derivative 
653 |a generalized comparison principle 
653 |a homoclinic solutions 
653 |a homotopy 
653 |a integral solutions 
653 |a limit solutions 
653 |a lower and upper solutions 
653 |a m-dissipative operators 
653 |a minimization theorem 
653 |a modified fractional Halanay inequality 
653 |a monotone-iterative technique 
653 |a multiplicity 
653 |a multipoint and sub-strip boundary conditions 
653 |a n-th order fuzzy partial H-derivative 
653 |a nonlocal boundary conditions 
653 |a one-sided Perron condition 
653 |a optimal feedback control 
653 |a partial Volterra fuzzy integro-differential equations 
653 |a porous material 
653 |a positive solutions 
653 |a Riemann-Liouville fractional differential equation 
653 |a Riemann-Liouville fractional differential equations 
653 |a Riemann-Liouville integral 
653 |a roughness 
653 |a variable delay 
653 |a Voigt model 
653 |a weakly upper semicontinuous 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/68395  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/3410  |7 0  |z Open Access: DOAB, download the publication