Optimal Domain and Integral Extension of Operators Acting in Frechet Function Spaces

It is known that a continuous linear operator T defined on a Banach function space X(μ) (over a finite measure space ( Omega,§igma,μ)) and with values in a Banach space X can be extended to a sort of optimal domain. Indeed, under certain assumptions on the space X(μ) and the operator T this optim...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Berlin/Germany Logos Verlag Berlin 2017
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 02596namaa2200397uu 4500
001 doab64485
003 oapen
005 20210408
006 m o d
007 cr|mn|---annan
008 210408s2017 xx |||||o ||| 0|eng d
020 |a 4557 
020 |a 9783832545574 
024 7 |a 10.30819/4557  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a PBK  |2 bicssc 
720 1 |a Blaimer, Bettina  |4 aut 
245 0 0 |a Optimal Domain and Integral Extension of Operators Acting in Frechet Function Spaces 
260 |a Berlin/Germany  |b Logos Verlag Berlin  |c 2017 
300 |a 1 online resource (137 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a It is known that a continuous linear operator T defined on a Banach function space X(μ) (over a finite measure space ( Omega,§igma,μ)) and with values in a Banach space X can be extended to a sort of optimal domain. Indeed, under certain assumptions on the space X(μ) and the operator T this optimal domain coincides with L±(mâ T), the space of all functions integrable with respect to the vector measure mâ T associated with T, and the optimal extension of T turns out to be the integration operator Iâ mâ T. In this book the idea is taken up and the corresponding theory is translated to a larger class of function spaces, namely to Fréchet function spaces X(μ) (this time over a Ï -finite measure space ( Omega,§igma,μ)). It is shown that under similar assumptions on X(μ) and T as in the case of Banach function spaces the so-called ``optimal extension process'' also works for this altered situation. In a further step the newly gained results are applied to four well-known operators defined on the Fréchet function spaces L^p-([0,1]) resp. L^p-(G) (where G is a compact Abelian group) and L^pâ textloc( mathbbR). 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Calculus and mathematical analysis  |2 bicssc 
653 |a Fréchet function spaces 
653 |a Optimal domain process 
653 |a Vector measures 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/64485  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://www.logos-verlag.de/ebooks/OA/978-3-8325-4557-4.pdf  |7 0  |z Open Access: DOAB, download the publication