Systems Analytics and Integration of Big Omics Data

A "genotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04767namaa2201165uu 4500
001 doab60435
003 oapen
005 20210212
006 m o d
007 cr|mn|---annan
008 210212s2020 xx |||||o ||| 0|eng d
020 |a 9783039287444 
020 |a 9783039287451 
020 |a books978-3-03928-745-1 
024 7 |a 10.3390/books978-3-03928-745-1  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a M  |2 bicssc 
720 1 |a Hardiman, Gary  |4 aut 
245 0 0 |a Systems Analytics and Integration of Big Omics Data 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 online resource (202 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a A "genotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This "Big Data" is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of gene-environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
653 |a algorithm development for network integration 
653 |a Alzheimer's disease 
653 |a amyloid-beta 
653 |a annotation 
653 |a artificial intelligence 
653 |a biocuration 
653 |a bioinformatics pipelines 
653 |a candidate genes 
653 |a causal inference 
653 |a cell lines 
653 |a challenges 
653 |a chromatin modification 
653 |a class imbalance 
653 |a clinical data 
653 |a cognitive impairment 
653 |a curse of dimensionality 
653 |a data integration 
653 |a database 
653 |a deep phenotype 
653 |a dementia 
653 |a direct effect 
653 |a disease variants 
653 |a distance correlation 
653 |a drug sensitivity 
653 |a enrichment analysis 
653 |a epidemiological data 
653 |a epigenetics 
653 |a feature selection 
653 |a Gene Ontology 
653 |a gene-environment interactions 
653 |a genomics 
653 |a genotype 
653 |a heterogeneous data 
653 |a indirect effect 
653 |a integrative analytics 
653 |a joint modeling 
653 |a KEGG pathways 
653 |a logic forest 
653 |a machine learning 
653 |a microtubule-associated protein tau 
653 |a miRNA-gene expression networks 
653 |a missing data 
653 |a multi-omics 
653 |a multiomics integration 
653 |a multivariate analysis 
653 |a multivariate causal mediation 
653 |a n/a 
653 |a network topology analysis 
653 |a neurodegeneration 
653 |a non-omics data 
653 |a omics data 
653 |a pharmacogenomics 
653 |a phenomics 
653 |a phenotype 
653 |a plot visualization 
653 |a precision medicine informatics 
653 |a proteomic analysis 
653 |a regulatory genomics 
653 |a RNA expression 
653 |a scalability 
653 |a sequencing 
653 |a support vector machine 
653 |a systemic lupus erythematosus 
653 |a tissue classification 
653 |a tissue-specific expressed genes 
653 |a transcriptome 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/60435  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/2183  |7 0  |z Open Access: DOAB, download the publication