State-of-the-art Laser Gas Sensing Technologies

Trace gas sensing technologies are widely used in many applications, such as environmental monitoring, life science, medical diagnostics, and planetary exploration. On the one hand, laser sources have developed greatly due to the rapid development of laser media and laser techniques in recent years....

Full description

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
n/a
PQS
Tm
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05662namaa2201321uu 4500
001 doab59989
003 oapen
005 20210212
006 m o d
007 cr|mn|---annan
008 210212s2020 xx |||||o ||| 0|eng d
020 |a 9783039283989 
020 |a 9783039283996 
020 |a books978-3-03928-399-6 
024 7 |a 10.3390/books978-3-03928-399-6  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
720 1 |a Krzempek, Karol  |4 aut 
720 1 |a Ma, Yufei  |4 aut 
720 1 |a Vicet, Aurore  |4 aut 
245 0 0 |a State-of-the-art Laser Gas Sensing Technologies 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 online resource (278 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Trace gas sensing technologies are widely used in many applications, such as environmental monitoring, life science, medical diagnostics, and planetary exploration. On the one hand, laser sources have developed greatly due to the rapid development of laser media and laser techniques in recent years. Some novel lasers such as solid-state, diode, and quantum cascade lasers have experienced significant progress. At present, laser wavelengths can cover the range from ultraviolet to terahertz, which could promote the development of laser gas sensing technologies significantly. On the other hand, some new gas sensing methods have appeared, such as photothermal spectroscopy and photoacoustic spectroscopy. Laser spectroscopy-based gas sensing techniques have the advantages of high sensitivity, non-invasiveness, and allowing in situ, real-time observation. Due to the rapid and recent developments in laser source as well as the great merits of laser spectroscopy-based gas sensing techniques, this book aims to provide an updated overview of the state-of-the-art laser gas sensing technologies. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering and technology  |2 bicssc 
653 |a 13CO2/12CO2 isotope ratio detection 
653 |a a multi-reflection chamber 
653 |a absorption spectroscopy 
653 |a algorithm 
653 |a all-fiber laser 
653 |a broadband spectrum 
653 |a C2H2 detection 
653 |a carbon dioxide monitoring 
653 |a chicken swarm optimization 
653 |a combustion diagnostic 
653 |a combustion sensing 
653 |a concentration prediction 
653 |a continuous-wave (CW) 
653 |a coupling efficiency 
653 |a deep-sea natural gas hydrate exploration 
653 |a design optimization 
653 |a detection limit 
653 |a diffuse integrating cavity 
653 |a direct absorption spectroscopy (DAS) 
653 |a femtosecond laser 
653 |a femtosecond laser electronic excitation tagging 
653 |a femtosecond laser-induced breakdown spectroscopy 
653 |a femtosecond laser-induced plasma spectroscopy 
653 |a filament-induced nonlinear spectroscopy 
653 |a finite-element analysis 
653 |a frequency modulation spectroscopy 
653 |a gas detection 
653 |a gas sensing 
653 |a graphene saturable absorber 
653 |a GRIN fiber probe 
653 |a Ho:LuVO4 laser 
653 |a hollow-core photonic crystal fiber 
653 |a information processing technology 
653 |a interband cascade lasers 
653 |a interferometric gas detection 
653 |a intracavity gas detection 
653 |a laser absorption spectroscopy (LAS) 
653 |a laser spectroscopy 
653 |a methane 
653 |a methane detection 
653 |a MgO:PPLN crystal 
653 |a mid-infrared 
653 |a mid-infrared fingerprint spectrum 
653 |a mid-infrared ICL 
653 |a n/a 
653 |a near-infrared 
653 |a noise reduction algorithms 
653 |a non-linearity 
653 |a optical parametric oscillator 
653 |a optical parametric oscillator (OPO) 
653 |a optical sensing 
653 |a photothermal spectroscopy 
653 |a PQS 
653 |a practical applications 
653 |a quantum cascade lasers 
653 |a quartz tuning fork 
653 |a quartz-enhanced photoacoustic spectroscopy 
653 |a real-time observation 
653 |a single-frequency 
653 |a stokes vectors 
653 |a support vector machine 
653 |a TDLAS 
653 |a TDLAS technique 
653 |a temperature compensation 
653 |a thermal control 
653 |a thermoelectric cooling 
653 |a time division multiplexing differential modulation 
653 |a Tm 
653 |a trace gas detection 
653 |a tunable diode laser 
653 |a tunable laser absorption spectroscopy 
653 |a tunable mid-infrared solid-state laser 
653 |a two-photon femtosecond laser-induced fluorescence 
653 |a two-tone frequency modulation spectroscopy 
653 |a wavelength modulation 
653 |a wavelength modulation spectroscopy 
653 |a wavelength modulation spectroscopy (WMS) 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/59989  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/2051  |7 0  |z Open Access: DOAB, download the publication