Sensors in Agriculture

Agriculture requires technical solutions for increasing production while lessening environmental impact by reducing the application of agro-chemicals and increasing the use of environmentally friendly management practices. A benefit of this is the reduction of production costs. Sensor technologies p...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
PLS
UAS
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 08767namaa2202665uu 4500
001 doab59231
003 oapen
005 20210212
006 m o d
007 cr|mn|---annan
008 210212s2019 xx |||||o ||| 0|eng d
020 |a 9783038977445 
020 |a 9783038977452 
020 |a books978-3-03897-745-2 
024 7 |a 10.3390/books978-3-03897-745-2  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
720 1 |a Moshou, Dimitrios  |4 aut 
245 0 0 |a Sensors in Agriculture 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 online resource (354 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Agriculture requires technical solutions for increasing production while lessening environmental impact by reducing the application of agro-chemicals and increasing the use of environmentally friendly management practices. A benefit of this is the reduction of production costs. Sensor technologies produce tools to achieve the abovementioned goals. The explosive technological advances and developments in recent years have enormously facilitated the attainment of these objectives, removing many barriers for their implementation, including the reservations expressed by farmers. Precision agriculture and 'smart farming' are emerging areas where sensor-based technologies play an important role. Farmers, researchers, and technical manufacturers are joining their efforts to find efficient solutions, improvements in production, and reductions in costs. This book brings together recent research and developments concerning novel sensors and their applications in agriculture. Sensors in agriculture are based on the requirements of farmers, according to the farming operations that need to be addressed. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering and technology  |2 bicssc 
653 |a 3D reconstruction 
653 |a agricultural land 
653 |a agriculture 
653 |a ambient intelligence 
653 |a apparent soil electrical conductivity 
653 |a apple shelf-life 
653 |a area frame sampling 
653 |a artificial neural networks 
653 |a back propagation model 
653 |a big data 
653 |a biological sensing 
653 |a birth sensor 
653 |a boron tolerance 
653 |a bovine embedded hardware 
653 |a cameras 
653 |a Capsicum annuum 
653 |a CARS 
653 |a case studies 
653 |a change of support 
653 |a chemometrics analysis 
653 |a chromium content 
653 |a CIE-Lab 
653 |a classification 
653 |a clover-grass 
653 |a compound sensor 
653 |a computer vision 
653 |a connected dominating set 
653 |a crop area 
653 |a crop inspection platform 
653 |a crop monitoring 
653 |a data fusion 
653 |a data validation and calibration 
653 |a dataset 
653 |a deep convolutional neural networks 
653 |a deep learning 
653 |a detection 
653 |a dielectric dispersion 
653 |a dielectric probe 
653 |a diffusion 
653 |a discrimination 
653 |a diseases 
653 |a distributed systems 
653 |a dry matter composition 
653 |a drying temperature 
653 |a dynamic weight 
653 |a ECa-directed soil sampling 
653 |a electrochemical sensors 
653 |a electromagnetic induction 
653 |a electronic nose 
653 |a energy balance 
653 |a energy efficiency 
653 |a event detection 
653 |a feature selection 
653 |a field crops 
653 |a fluorescent measurement 
653 |a Fusarium 
653 |a fuzzy logic 
653 |a gas sensor 
653 |a genetic algorithms 
653 |a geo-information 
653 |a geoinformatics 
653 |a geostatistics 
653 |a germination 
653 |a GF-1 satellite 
653 |a gradient boosted machines 
653 |a grapevine breeding 
653 |a greenhouse 
653 |a handheld 
653 |a heavy metal contamination 
653 |a hulled barely 
653 |a hyperspectral camera 
653 |a hyperspectral imaging 
653 |a irrigation 
653 |a Kinect 
653 |a land cover 
653 |a landslide 
653 |a laser wavelength 
653 |a laser-induced breakdown spectroscopy 
653 |a leaf area index 
653 |a LiDAR 
653 |a light-beam 
653 |a machine learning 
653 |a machine-learning 
653 |a management zones 
653 |a mandarin orange 
653 |a meat spoilage 
653 |a mobile app 
653 |a moisture 
653 |a moisture content 
653 |a multivariate water quality parameters 
653 |a naked barley 
653 |a near infrared 
653 |a near infrared sensors 
653 |a near-infrared 
653 |a neural networks 
653 |a NIR hyperspectral imaging 
653 |a nitrogen 
653 |a noninvasive detection 
653 |a object tracking 
653 |a obstacle detection 
653 |a on-line vis-NIR measurement 
653 |a one-class 
653 |a optical sensor 
653 |a packing density 
653 |a partial least squares-discriminant analysis 
653 |a pest 
653 |a pest management 
653 |a pest scouting 
653 |a photograph-grid method 
653 |a plant disease 
653 |a plant localization 
653 |a plant phenotyping 
653 |a PLS 
653 |a precision agriculture 
653 |a precision plant protection 
653 |a preprocessing methods 
653 |a processing of sensed data 
653 |a proximal sensor 
653 |a proximity sensing 
653 |a quality assessment 
653 |a radar 
653 |a radiative transfer model 
653 |a random forests 
653 |a real-time processing 
653 |a recognition patterns 
653 |a regression estimator 
653 |a remote sensing 
653 |a remote sensing image classification 
653 |a response surface sampling 
653 |a RGB-D sensor 
653 |a rice 
653 |a rice field monitoring 
653 |a rice leaves 
653 |a RPAS 
653 |a salt concentration 
653 |a salt tolerance 
653 |a scattering 
653 |a semi-arid regions 
653 |a sensor 
653 |a sensor evaluation 
653 |a silage 
653 |a simultaneous measurement 
653 |a smart irrigation 
653 |a soil 
653 |a soil mapping 
653 |a soil moisture sensors 
653 |a soil salinity 
653 |a soil type classification 
653 |a SPA-MLR 
653 |a spatial data 
653 |a spatial variability 
653 |a spatial-temporal model 
653 |a speckle 
653 |a spectral analysis 
653 |a spectral pre-processing 
653 |a spectroscopy 
653 |a spiking 
653 |a SS-OCT 
653 |a stereo imaging 
653 |a stratification 
653 |a striped stem-borer 
653 |a temperature sensors 
653 |a texture feature 
653 |a texture features 
653 |a thermal image 
653 |a thermal imaging 
653 |a time-series data 
653 |a total carbon 
653 |a total nitrogen 
653 |a UAS 
653 |a vegetable oil 
653 |a vegetation indices 
653 |a vine 
653 |a vineyard 
653 |a virtual organizations of agents 
653 |a visible and near-infrared reflectance spectroscopy 
653 |a Vitis vinifera 
653 |a water depth sensors 
653 |a water management 
653 |a water supply network 
653 |a weed control 
653 |a weeds 
653 |a wheat 
653 |a Wi-SUN 
653 |a wide field view 
653 |a wireless sensor 
653 |a wireless sensor network 
653 |a wireless sensor network (WSN) 
653 |a wireless sensor networks (WSN) 
653 |a WSN distribution algorithms 
653 |a X-ray fluorescence spectroscopy 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/59231  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/1344  |7 0  |z Open Access: DOAB, download the publication