Robust and Regularized Algorithms for Vehicle Tractive Force Prediction and Mass Estimation

This work provides novel robust and regularized algorithms for parameter estimation with applications in vehicle tractive force prediction and mass estimation. Given a large record of real world data from test runs on public roads, recursive algorithms adjusted the unknown vehicle parameters under a...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: KIT Scientific Publishing 2018
Series:Karlsruher Schriftenreihe Fahrzeugsystemtechnik / Institut für Fahrzeugsystemtechnik
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 02072namaa2200469uu 4500
001 doab58556
003 oapen
005 20210212
006 m o d
007 cr|mn|---annan
008 210212s2018 xx |||||o ||| 0|eng d
020 |a 9783731508076 
020 |a KSP/1000083492 
024 7 |a 10.5445/KSP/1000083492  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
720 1 |a Rhode, Stephan  |4 aut 
245 0 0 |a Robust and Regularized Algorithms for Vehicle Tractive Force Prediction and Mass Estimation 
260 |b KIT Scientific Publishing  |c 2018 
300 |a 1 online resource (XXIV, 196 p. p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Karlsruher Schriftenreihe Fahrzeugsystemtechnik / Institut für Fahrzeugsystemtechnik 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This work provides novel robust and regularized algorithms for parameter estimation with applications in vehicle tractive force prediction and mass estimation. Given a large record of real world data from test runs on public roads, recursive algorithms adjusted the unknown vehicle parameters under a broad variation of statistical assumptions for two linear gray-box models. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-sa/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-sa/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a errors-in-variables 
653 |a Onlinefilter 
653 |a recursive estimation 
653 |a robust estimation 
653 |a Robuste Schätzer 
653 |a system identification 
653 |a Systemidentifikation 
653 |a Total Least Squares 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/58556  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://www.ksp.kit.edu/9783731508076  |7 0  |z Open Access: DOAB, download the publication