Remote Sensing based Building Extraction

Building extraction from remote sensing data plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Even though significant research has been carried out for more than two decades, the success of automatic...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
3-D
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05288namaa2201357uu 4500
001 doab58168
003 oapen
005 20210212
006 m o d
007 cr|mn|---annan
008 210212s2020 xx |||||o ||| 0|eng d
020 |a 9783039283828 
020 |a 9783039283835 
020 |a books978-3-03928-383-5 
024 7 |a 10.3390/books978-3-03928-383-5  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
720 1 |a Yang, Bisheng  |4 aut 
720 1 |a Awrangjeb, Mohammad  |4 aut 
720 1 |a Hu, Xiangyun  |4 aut 
720 1 |a Tian, Jiaojiao  |4 aut 
245 0 0 |a Remote Sensing based Building Extraction 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 online resource (442 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Building extraction from remote sensing data plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Even though significant research has been carried out for more than two decades, the success of automatic building extraction and modeling is still largely impeded by scene complexity, incomplete cue extraction, and sensor dependency of data. Most recently, deep neural networks (DNN) have been widely applied for high classification accuracy in various areas including land-cover and land-use classification. Therefore, intelligent and innovative algorithms are needed for the success of automatic building extraction and modeling. This Special Issue focuses on newly developed methods for classification and feature extraction from remote sensing data for automatic building extraction and 3D 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering and technology  |2 bicssc 
653 |a 3-D 
653 |a 3D reconstruction 
653 |a 3D urban expansion 
653 |a 5G signal simulation 
653 |a accuracy analysis 
653 |a active contour model 
653 |a aerial images 
653 |a attention mechanism 
653 |a binary decision network 
653 |a boundary extraction 
653 |a boundary regulated network 
653 |a building 
653 |a building boundary extraction 
653 |a building detection 
653 |a building edges detection 
653 |a building extraction 
653 |a building index 
653 |a building reconstruction 
653 |a building regularization technique 
653 |a change detection 
653 |a convolutional neural network 
653 |a data fusion 
653 |a deep convolutional neural network 
653 |a deep learning 
653 |a developing city 
653 |a digital building height 
653 |a DTM extraction 
653 |a elevation map 
653 |a feature extraction 
653 |a feature fusion 
653 |a feature-level-fusion 
653 |a fully convolutional network 
653 |a Gabor filter 
653 |a generative adversarial network 
653 |a GIS data 
653 |a high resolution optical images 
653 |a high spatial resolution remote sensing imagery 
653 |a high spatial resolution remotely sensed imagery 
653 |a high-resolution aerial imagery 
653 |a high-resolution aerial images 
653 |a high-resolution satellite images 
653 |a image fusion 
653 |a imagery 
653 |a indoor modelling 
653 |a Inria aerial image labeling dataset 
653 |a land-use 
653 |a LiDAR 
653 |a LiDAR point cloud 
653 |a Massachusetts buildings dataset 
653 |a mathematical morphology 
653 |a method comparison 
653 |a mobile laser scanning 
653 |a modelling 
653 |a morphological attribute filter 
653 |a morphological profile 
653 |a multiscale Siamese convolutional networks (MSCNs) 
653 |a n/a 
653 |a object recognition 
653 |a occlusion 
653 |a open data 
653 |a outline extraction 
653 |a point cloud 
653 |a point clouds 
653 |a reconstruction 
653 |a regularization 
653 |a remote sensing 
653 |a richer convolution features 
653 |a roof segmentation 
653 |a semantic segmentation 
653 |a simple linear iterative clustering (SLIC) 
653 |a straight-line segment matching 
653 |a U-Net 
653 |a ultra-hierarchical sampling 
653 |a unmanned aerial vehicle (UAV) 
653 |a urban building extraction 
653 |a very high resolution 
653 |a very high resolution imagery 
653 |a VHR remote sensing imagery 
653 |a web-net 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/58168  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/2139  |7 0  |z Open Access: DOAB, download the publication