New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes

Modern factories are experiencing rapid digital transformation supported by emerging technologies, such as the Industrial Internet of things (IIOT), industrial big data and cloud technologies, deep learning and deep analytics, AI, intelligent robotics, cyber-physical systems and digital twins, compl...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
AHP
BIM
FCM
HED
LGM
n/a
QFD
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 06403namaa2201645uu 4500
001 doab54583
003 oapen
005 20210211
006 m o d
007 cr|mn|---annan
008 210211s2020 xx |||||o ||| 0|eng d
020 |a 9783039282906 
020 |a 9783039282913 
020 |a books978-3-03928-291-3 
024 7 |a 10.3390/books978-3-03928-291-3  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
720 1 |a Posada, Jorge  |4 aut 
720 1 |a López de Lacalle, Luis Norberto  |4 aut 
245 0 0 |a New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 online resource (428 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Modern factories are experiencing rapid digital transformation supported by emerging technologies, such as the Industrial Internet of things (IIOT), industrial big data and cloud technologies, deep learning and deep analytics, AI, intelligent robotics, cyber-physical systems and digital twins, complemented by visual computing (including new forms of artificial vision with machine learning, novel HMI, simulation, and visualization). This is evident in the global trend of Industry 4.0. The impact of these technologies is clear in the context of high-performance manufacturing. Important improvements can be achieved in productivity, systems reliability, quality verification, etc. Manufacturing processes, based on advanced mechanical principles, are enhanced by big data analytics on industrial sensor data. In current machine tools and systems, complex sensors gather useful data, which is captured, stored, and processed with edge, fog, or cloud computing. These processes improve with digital monitoring, visual data analytics, AI, and computer vision to achieve a more productive and reliable smart factory. New value chains are also emerging from these technological changes. This book addresses these topics, including contributions deployed in production, as well as general aspects of Industry 4.0. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering and technology  |2 bicssc 
653 |a 3D mesh reconstruction 
653 |a 4th industrial revolution 
653 |a AHP 
653 |a aircraft structure crack detection 
653 |a anomaly detection 
653 |a artificial neural networks 
653 |a automated surface inspection 
653 |a automation system 
653 |a big data 
653 |a bilinear model 
653 |a BIM 
653 |a blister defect 
653 |a capacity control 
653 |a chatter 
653 |a classification 
653 |a cloud-based control system 
653 |a competence 
653 |a computer vision 
653 |a configure-to-order 
653 |a connected enterprise 
653 |a construction equipment 
653 |a contour detection 
653 |a control as a service 
653 |a control service 
653 |a convolutional neural network 
653 |a convolutional neural networks 
653 |a cutting insert selection 
653 |a cutting parameter optimization 
653 |a cyber-physical production systems 
653 |a Cyber-Physical Systems (CPS) 
653 |a D-VGG16 
653 |a data reduction 
653 |a decision support 
653 |a deep learning 
653 |a defect detection 
653 |a demand-side management 
653 |a demand-side response 
653 |a depthwise separable convolution 
653 |a digital information flow 
653 |a digital manufacturing 
653 |a digital platforms 
653 |a digital twins 
653 |a dilated convolutions 
653 |a economic recession 
653 |a edge computing 
653 |a elliptical paraboloid array 
653 |a energy flexibility 
653 |a fabric defect detection 
653 |a FCM 
653 |a feature pyramid 
653 |a fibre of preserved Szechuan pickle 
653 |a flower pollination algorithm 
653 |a genetic algorithm 
653 |a geometric relationship 
653 |a Grad-CAM 
653 |a HED 
653 |a image smoothing 
653 |a impacts marketing innovations 
653 |a in-line dimensional inspection 
653 |a industrial big data 
653 |a industrial knowledge graph 
653 |a industrial load management 
653 |a industry 4.0 
653 |a Industry 4.0 
653 |a INDUSTRY 4.0 
653 |a innovative marketing tools 
653 |a intellectualization of industrial information 
653 |a Internet of Things (IoT) 
653 |a IT concept 
653 |a job shop systems 
653 |a lean assembly 
653 |a LGM 
653 |a localization 
653 |a machine learning 
653 |a maintenance expert 
653 |a marketing innovations 
653 |a matching 
653 |a micro-armature 
653 |a n/a 
653 |a neural network 
653 |a operator theory 
653 |a optical slope sensor 
653 |a optical system 
653 |a platform-based ecosystem 
653 |a polymer lithium-ion battery 
653 |a predictive analytics 
653 |a QFD 
653 |a relative angle 
653 |a research and development indicators 
653 |a revolution workpiece 
653 |a RMTs 
653 |a scalability test 
653 |a scheduling 
653 |a self-calibration method 
653 |a skyline queries 
653 |a smart factory 
653 |a smart manufacturing 
653 |a smart service 
653 |a smart system 
653 |a social network 
653 |a train wheel 
653 |a turning 
653 |a vertex distance 
653 |a warm forming 
653 |a YOLOv3 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/54583  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/2109  |7 0  |z Open Access: DOAB, download the publication