LEADER 04585namaa2200877uu 4500
001 doab54248
003 oapen
005 20210211
006 m o d
007 cr|mn|---annan
008 210211s2020 xx |||||o ||| 0|eng d
020 |a 9783039287840 
020 |a 9783039287857 
020 |a books978-3-03928-785-7 
024 7 |a 10.3390/books978-3-03928-785-7  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TCB  |2 bicssc 
720 1 |a Vismara, Elena  |4 aut 
245 0 0 |a Nanocelluloses: Synthesis, Modification and Applications 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 online resource (142 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Nanocelluloses: Synthesis, Modification and Applications is a book that provides some recent enhancements of various types of nanocellulose, mainly bacterial nanocellulose, cellulose nanocrystals and nanofibrils, and their nanocomposites. Bioactive bacterial nanocellulose finds applications in biomedical applications, https://doi.org/10.3390/nano9101352. Grafting and cross-linking bacterial nanocellulose modification emerges as a good choice for improving the potential of bacterial nanocellulose in such biomedical applications as topical wound dressings and tissue-engineering scaffolds, https://doi.org/10.3390/nano9121668. On the other hand, bacterial nanocellulose can be used as paper additive for fluorescent paper, https://doi.org/10.3390/nano9091322, and for the reinforcement of paper made from recycled fibers, https://doi.org/10.3390/nano9010058. Nanocellulose membranes are used for up-to-date carbon capture applications, https://doi.org/10.3390/nano9060877. Nanocellulose has been applied as a novel component of membranes designed to address a large spectrum of filtration problems, https://doi.org/10.3390/nano9060867. Poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNC) in random composite mats prepared using the electrospinning method are widely characterized in a large range of physical chemical aspects, https://doi.org/10.3390/nano9050805. Similarly, physical chemical aspects are emphasized for carboxylated cellulose nanofibrils produced by ammonium persulfate oxidation combined with ultrasonic and mechanical treatment, https://doi.org/10.3390/nano8090640. It is extraordinary how nanocellulose can find application in such different fields. Along the same lines, the contributions in this book come from numerous different countries, confirming the great interest of the scientific community for nanocellulose. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Biotechnology  |2 bicssc 
653 |a amino acid 
653 |a ammonium persulfate 
653 |a bacterial cellulose 
653 |a bacterial nanocellulose 
653 |a bioactive bacterial nanocellulose 
653 |a biomedical applications 
653 |a carbon source 
653 |a cellulose nanocrystals 
653 |a cellulosic fiber 
653 |a ciprofloxacin 
653 |a CO2 separation 
653 |a complex 
653 |a cross-linking 
653 |a dispersion 
653 |a durability 
653 |a electrospinning 
653 |a Eu ion 
653 |a ex situ modification 
653 |a facilitated transport 
653 |a Fenton reagent 
653 |a fluorescent paper 
653 |a gas separation membranes 
653 |a high shear mixer 
653 |a in situ modification 
653 |a ionic liquid 
653 |a methacrylate 
653 |a nanocellulose 
653 |a nanocomposite 
653 |a nanofibrils 
653 |a oxidation 
653 |a poly (vinyl alcohol) 
653 |a polymer nanocomposites 
653 |a recycled fiber 
653 |a reinforcement 
653 |a rheology 
653 |a scanning electron microscopy 
653 |a selective separation 
653 |a tensile properties 
653 |a tensile strength 
653 |a thermogravimetric analysis 
653 |a vancomycin 
653 |a water application 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/54248  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/2264  |7 0  |z Open Access: DOAB, download the publication