Image Processing in Agriculture and Forestry

Image processing in agriculture and forestry represents a challenge towards the automation of tasks for better performances. Agronomists, computer and robotics engineers, and agricultural machinery industry manufacturers now have at their disposal a book containing a collection of methods, procedure...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2018
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 02902namaa2200505uu 4500
001 doab49905
003 oapen
005 20210211
006 m o d
007 cr|mn|---annan
008 210211s2018 xx |||||o ||| 0|eng d
020 |a 9783038970972 
020 |a 9783038970989 
020 |a books978-3-03897-098-9 
024 7 |a 10.3390/books978-3-03897-098-9  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TDCW  |2 bicssc 
720 1 |a Gonzalo Pajares Martinsanz (Ed.)  |4 aut 
720 1 |a Francisco Rovira-Más (Ed.)  |4 aut 
245 0 0 |a Image Processing in Agriculture and Forestry 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2018 
300 |a 1 online resource (222 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Image processing in agriculture and forestry represents a challenge towards the automation of tasks for better performances. Agronomists, computer and robotics engineers, and agricultural machinery industry manufacturers now have at their disposal a book containing a collection of methods, procedures, designs, and descriptions at the technological forefront, which serves as an important support and aid for the implementation and development of their own ideas. The book describes: (1) Applications (canopy on trees, aboveground biomass, phenotyping, chlorophyll, leaf area index, water and nutrient content, land cover change, soil properties, and secure autonomous navigation); (2) Imaging devices onboard robots, unmanned aerial vehicles (UAVs), and satellites operating at different spectral ranges (visible, infrared, hyper-multispectral bands, and radar), as well as guidelines for selecting machine vision systems in outdoor environments; and (3) (Specific computer vision methods (generic and convolutional neural networks, machine learning, specific segmentation approaches, vegetation indices, and three-dimensional (3D) reconstruction). 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Pharmaceutical chemistry and technology  |2 bicssc 
653 |a aboreground biomass 
653 |a agriculture 
653 |a autonomous navigation 
653 |a biophysical variables 
653 |a computer vision 
653 |a forestry 
653 |a image processing 
653 |a leaf area index 
653 |a machine-vision 
653 |a vegetation index 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/49905  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/714  |7 0  |z Open Access: DOAB, download the publication