Hopf Algebras, Quantum Groups and Yang-Baxter Equations

The Yang-Baxter equation first appeared in theoretical physics, in a paper by the Nobel laureate C.N. Yang and in the work of R.J. Baxter in the field of Statistical Mechanics. At the 1990 International Mathematics Congress, Vladimir Drinfeld, Vaughan F. R. Jones, and Edward Witten were awarded Fiel...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 03145namaa2200517uu 4500
001 doab49556
003 oapen
005 20210211
006 m o d
007 cr|mn|---annan
008 210211s2019 xx |||||o ||| 0|eng d
020 |a 9783038973249 
020 |a 9783038973256 
020 |a books978-3-03897-325-6 
024 7 |a 10.3390/books978-3-03897-325-6  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
720 1 |a Florin Felix Nichita (Ed.)  |4 aut 
245 0 0 |a Hopf Algebras, Quantum Groups and Yang-Baxter Equations 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 online resource (238 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The Yang-Baxter equation first appeared in theoretical physics, in a paper by the Nobel laureate C.N. Yang and in the work of R.J. Baxter in the field of Statistical Mechanics. At the 1990 International Mathematics Congress, Vladimir Drinfeld, Vaughan F. R. Jones, and Edward Witten were awarded Fields Medals for their work related to the Yang-Baxter equation. It turned out that this equation is one of the basic equations in mathematical physics; more precisely, it is used for introducing the theory of quantum groups. It also plays a crucial role in: knot theory, braided categories, the analysis of integrable systems, non-commutative descent theory, quantum computing, non-commutative geometry, etc. Many scientists have used the axioms of various algebraic structures (quasi-triangular Hopf algebras, Yetter-Drinfeld categories, quandles, group actions, Lie (super)algebras, brace structures, (co)algebra structures, Jordan triples, Boolean algebras, relations on sets, etc.) or computer calculations (and Grobner bases) in order to produce solutions for the Yang-Baxter equation. However, the full classification of its solutions remains an open problem. At present, the study of solutions of the Yang-Baxter equation attracts the attention of a broad circle of scientists. The current volume highlights various aspects of the Yang-Baxter equation, related algebraic structures, and applications. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a braid group 
653 |a braided category 
653 |a bundle 
653 |a duality 
653 |a Hopf algebra 
653 |a Lie algebra 
653 |a Quantum Group 
653 |a quantum integrability 
653 |a quantum projective space 
653 |a quasitriangular structure 
653 |a R-matrix 
653 |a six-vertex model 
653 |a star-triangle relation 
653 |a Yang-Baxter equation 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/49556  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/1119  |7 0  |z Open Access: DOAB, download the publication