Heat kernel estimates and L p -spectral theory of locally symmetric spaces

In this work we derive upper Gaussian bounds for the heat kernel on locally symmetric spaces of non-compact type. Furthermore, we determine explicitly the Lp-spectrum of locally symmetric spaces M whose universal covering is a rank one symmetric space of non-compact type if either the fundamental gr...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: KIT Scientific Publishing 2007
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 01768namaa2200385uu 4500
001 doab49172
003 oapen
005 20210211
006 m o d
007 cr|mn|---annan
008 210211s2007 xx |||||o ||| 0|eng d
020 |a 9783866441088 
020 |a KSP/1000005774 
024 7 |a 10.5445/KSP/1000005774  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
720 1 |a Weber, Andreas  |4 aut 
245 0 0 |a Heat kernel estimates and L p -spectral theory of locally symmetric spaces 
260 |b KIT Scientific Publishing  |c 2007 
300 |a 1 online resource (XII, 94 p. p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a In this work we derive upper Gaussian bounds for the heat kernel on locally symmetric spaces of non-compact type. Furthermore, we determine explicitly the Lp-spectrum of locally symmetric spaces M whose universal covering is a rank one symmetric space of non-compact type if either the fundamental group of M is small (in a certain sense) or if the fundamental group is arithmetic and M is non-compact. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a Laplace-Beltrami-Operator 
653 |a Lokal symmetrischer Raum 
653 |a Spektrum 
653 |a Wärmeleitungskern 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/49172  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://www.ksp.kit.edu/9783866441088  |7 0  |z Open Access: DOAB, download the publication