Genomics in Aquaculture to Better Understand Species Biology and Accelerate Genetic Progress

From a global perspective aquaculture is an activity related to food production with large potential for growth. Considering a continuously growing population, the efficiency and sustainability of this activity will be crucial to meet the needs of protein for human consumption in the near future. Ho...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Frontiers Media SA 2016
Series:Frontiers Research Topics
Subjects:
Online Access:Open Access: DOAB, download the publication
Open Access: DOAB: description of the publication
LEADER 04668namaa2200493uu 4500
001 doab48419
003 oapen
005 20210211
006 m o d
007 cr|mn|---annan
008 210211s2016 xx |||||o ||| 0|eng d
020 |a 978-2-88919-957-0 
020 |a 9782889199570 
024 7 |a 10.3389/978-2-88919-957-0  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a PSAK  |2 bicssc 
720 1 |a Ross Houston  |4 aut 
720 1 |a Jose Manuel Yanez  |4 aut 
720 1 |a Scott Newman  |4 aut 
245 0 0 |a Genomics in Aquaculture to Better Understand Species Biology and Accelerate Genetic Progress 
260 |b Frontiers Media SA  |c 2016 
300 |a 1 online resource (151 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a From a global perspective aquaculture is an activity related to food production with large potential for growth. Considering a continuously growing population, the efficiency and sustainability of this activity will be crucial to meet the needs of protein for human consumption in the near future. However, for continuous enhancement of the culture of both fish and shellfish there are still challenges to overcome, mostly related to the biology of the cultured species and their interaction with (increasingly changing) environmental factors. Examples of these challenges include early sexual maturation, feed meal replacement, immune response to infectious diseases and parasites, and temperature and salinity tolerance. Moreover, it is estimated that less than 10% of the total aquaculture production in the world is based on populations genetically improved by means of artificial selection. Thus, there is considerable room for implementing breeding schemes aimed at improving productive traits having significant economic impact. By far the most economically relevant trait is growth rate, which can be efficiently improved by conventional genetic selection (i.e. based on breeding values of selection candidates). However, there are other important traits that cannot be measured directly on selection candidates, such as resistance against infectious and parasitic agents and carcass quality traits (e.g. fillet yield and meat color). However, these traits can be more efficiently improved using molecular tools to assist breeding programs by means of marker-assisted selection, using a few markers explaining a high proportion of the trait variation, or genomic selection, using thousands of markers to estimate genomic breeding values. The development and implementation of new technologies applied to molecular biology and genomics, such as next-generation sequencing methods and high-throughput genotyping platforms, are allowing the rapid increase of availability of genomic resources in aquaculture species. These resources will provide powerful tools to the research community and will aid in the determination of the genetic factors involved in several biological aspects of aquaculture species. In this regard, it is important to establish discussion in terms of which strategies will be more efficient to solve the primary challenges that are affecting aquaculture systems around the world. The main objective of this Research Topic is to provide a forum to communicate recent research and implementation strategies in the use of genomics in aquaculture species with emphasis on (1) a better understanding of fish and shellfish biological processes having considerable impact on aquaculture systems; and (2) the efficient incorporation of molecular information into breeding programs to accelerate genetic progress of economically relevant traits. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Genetics (non-medical)  |2 bicssc 
653 |a Fish breeding 
653 |a Genetic 
653 |a genomic selection 
653 |a high-throughput genotyping 
653 |a Next-generation sequencing 
653 |a selection footprints 
653 |a Single nucleotide polymorphism 
653 |a Transcription 
793 0 |a DOAB Library. 
856 4 0 |u http://journal.frontiersin.org/researchtopic/1945/genomics-in-aquaculture-to-better-understand-species-biology-and-accelerate-genetic-progress  |7 0  |z Open Access: DOAB, download the publication 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/48419  |7 0  |z Open Access: DOAB: description of the publication