Fractional Differential Equations: Theory, Methods and Applications

Fractional calculus provides the possibility of introducing integrals and derivatives of an arbitrary order in the mathematical modelling of physical processes, and it has become a relevant subject with applications to various fields, such as anomalous diffusion, propagation in different media, and...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04320namaa2200925uu 4500
001 doab47975
003 oapen
005 20210211
006 m o d
007 cr|mn|---annan
008 210211s2019 xx |||||o ||| 0|eng d
020 |a 9783039217328 
020 |a 9783039217335 
020 |a books978-3-03921-733-5 
024 7 |a 10.3390/books978-3-03921-733-5  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
720 1 |a Nieto, Juan J.  |4 aut 
720 1 |a Rodríguez-López, Rosana  |4 aut 
245 0 0 |a Fractional Differential Equations: Theory, Methods and Applications 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 online resource (172 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Fractional calculus provides the possibility of introducing integrals and derivatives of an arbitrary order in the mathematical modelling of physical processes, and it has become a relevant subject with applications to various fields, such as anomalous diffusion, propagation in different media, and propogation in relation to materials with different properties. However, many aspects from theoretical and practical points of view have still to be developed in relation to models based on fractional operators. This Special Issue is related to new developments on different aspects of fractional differential equations, both from a theoretical point of view and in terms of applications in different fields such as physics, chemistry, or control theory, for instance. The topics of the Issue include fractional calculus, the mathematical analysis of the properties of the solutions to fractional equations, the extension of classical approaches, or applications of fractional equations to several fields. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a ?-fractional derivative 
653 |a b-vex functions 
653 |a Caputo Operator 
653 |a conformable double Laplace decomposition method 
653 |a conformable fractional derivative 
653 |a conformable Laplace transform 
653 |a conformable partial fractional derivative 
653 |a controllability and observability Gramians 
653 |a Convex Functions 
653 |a delay differential system 
653 |a delays 
653 |a dependence on a parameter 
653 |a distributed delays 
653 |a energy inequality 
653 |a existence and uniqueness 
653 |a fixed point index 
653 |a fixed point theorem on mixed monotone operators 
653 |a fountain theorem 
653 |a fractional p-Laplacian 
653 |a fractional q-difference equation 
653 |a fractional thermostat model 
653 |a fractional wave equation 
653 |a fractional-order neural networks 
653 |a fractional-order system 
653 |a generalized convexity 
653 |a Hermite-Hadamard's Inequality 
653 |a impulses 
653 |a initial boundary value problem 
653 |a integral conditions 
653 |a Jenson Integral Inequality 
653 |a Kirchhoff-type equations 
653 |a Laplace Adomian Decomposition Method (LADM) 
653 |a Lyapunov functions 
653 |a Mittag-Leffler synchronization 
653 |a model order reduction 
653 |a modified functional methods 
653 |a Moser iteration method 
653 |a Navier-Stokes equation 
653 |a nonlinear differential system 
653 |a oscillation 
653 |a positive solution 
653 |a positive solutions 
653 |a Power-mean Inequality 
653 |a Razumikhin method 
653 |a Riemann-Liouville Fractional Integration 
653 |a singular one dimensional coupled Burgers' equation 
653 |a sub-b-s-convex functions 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/47975  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/1809  |7 0  |z Open Access: DOAB, download the publication