Deep Learning Applications with Practical Measured Results in Electronics Industries

This book collects 14 articles from the Special Issue entitled "Deep Learning Applications with Practical Measured Results in Electronics Industries" of Electronics. Topics covered in this Issue include four main parts: (1) environmental information analyses and predictions, (2) unmanned a...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
A*
CNN
GA
UAV
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05306namaa2201297uu 4500
001 doab44630
003 oapen
005 20210211
006 m o d
007 cr|mn|---annan
008 210211s2020 xx |||||o ||| 0|eng d
020 |a 9783039288632 
020 |a 9783039288649 
020 |a books978-3-03928-864-9 
024 7 |a 10.3390/books978-3-03928-864-9  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
720 1 |a Kung, Hsu-Yang  |4 aut 
720 1 |a Chen, Chi-Hua  |4 aut 
720 1 |a Horng, Mong-Fong  |4 aut 
720 1 |a Hwang, Feng-Jang  |4 aut 
245 0 0 |a Deep Learning Applications with Practical Measured Results in Electronics Industries 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 online resource (272 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This book collects 14 articles from the Special Issue entitled "Deep Learning Applications with Practical Measured Results in Electronics Industries" of Electronics. Topics covered in this Issue include four main parts: (1) environmental information analyses and predictions, (2) unmanned aerial vehicle (UAV) and object tracking applications, (3) measurement and denoising techniques, and (4) recommendation systems and education systems. These authors used and improved deep learning techniques (e.g., ResNet (deep residual network), Faster-RCNN (faster regions with convolutional neural network), LSTM (long short term memory), ConvLSTM (convolutional LSTM), GAN (generative adversarial network), etc.) to analyze and denoise measured data in a variety of applications and services (e.g., wind speed prediction, air quality prediction, underground mine applications, neural audio caption, etc.). Several practical experiments were conducted, and the results indicate that the performance of the presented deep learning methods is improved compared with the performance of conventional machine learning methods. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a History of engineering and technology  |2 bicssc 
653 |a A* 
653 |a background model 
653 |a binary classification 
653 |a CNN 
653 |a compressed sensing 
653 |a computational intelligence 
653 |a content reconstruction 
653 |a convolutional network 
653 |a data fusion 
653 |a data partition 
653 |a deep learning 
653 |a digital shearography 
653 |a discrete wavelet transform 
653 |a dot grid target 
653 |a eye-tracking device 
653 |a faster region-based CNN 
653 |a forecasting 
653 |a foreign object 
653 |a GA 
653 |a gated recurrent unit 
653 |a generative adversarial network 
653 |a geometric errors 
653 |a geometric errors correction 
653 |a GSA-BP 
653 |a human computer interaction 
653 |a humidity sensor 
653 |a hyperspectral image classification 
653 |a image compression 
653 |a image inpainting 
653 |a image restoration 
653 |a imaging confocal microscope 
653 |a Imaging Confocal Microscope 
653 |a information measure 
653 |a instance segmentation 
653 |a intelligent surveillance 
653 |a intelligent tire manufacturing 
653 |a K-means clustering 
653 |a kinematic modelling 
653 |a lateral stage errors 
653 |a Least Squares method 
653 |a long short-term memory 
653 |a machine learning 
653 |a MCM uncertainty evaluation 
653 |a multiple constraints 
653 |a multiple linear regression 
653 |a multivariate temporal convolutional network 
653 |a multivariate time series forecasting 
653 |a neighborhood noise reduction 
653 |a network layer contribution 
653 |a neural audio caption 
653 |a neural networks 
653 |a neuro-fuzzy systems 
653 |a nonlinear optimization 
653 |a offshore wind 
653 |a optimization techniques 
653 |a oral evaluation 
653 |a recommender system 
653 |a reinforcement learning 
653 |a residual networks 
653 |a rigid body kinematics 
653 |a saliency information 
653 |a smart grid 
653 |a supervised learning 
653 |a tire bubble defects 
653 |a tire quality assessment 
653 |a trajectory planning 
653 |a transfer learning 
653 |a UAV 
653 |a underground mines 
653 |a unmanned aerial vehicle 
653 |a unsupervised learning 
653 |a update mechanism 
653 |a update occasion 
653 |a visual tracking 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/44630  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/2296  |7 0  |z Open Access: DOAB, download the publication