Data-driven Methods for Fault Localization in Process Technology

Control systems at production plants consist of a large number of process variables. When detecting abnormal behavior, these variables generate an alarm. Due to the interconnection of the plant's devices the fault can lead to an alarm flood. This again hides the original location of the causing...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: KIT Scientific Publishing 2013
Series:Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 02083namaa2200409uu 4500
001 doab44557
003 oapen
005 20210211
006 m o d
007 cr|mn|---annan
008 210211s2013 xx |||||o ||| 0|eng d
020 |a 9783731500988 
020 |a KSP/1000036427 
024 7 |a 10.5445/KSP/1000036427  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
720 1 |a Kühnert, Christian  |4 aut 
245 0 0 |a Data-driven Methods for Fault Localization in Process Technology 
260 |b KIT Scientific Publishing  |c 2013 
300 |a 1 online resource (XVIII, 194 p. p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Control systems at production plants consist of a large number of process variables. When detecting abnormal behavior, these variables generate an alarm. Due to the interconnection of the plant's devices the fault can lead to an alarm flood. This again hides the original location of the causing device. In this work several data-driven approaches for root cause localization are proposed, compared and combined. All methods analyze disturbed process data for backtracking the propagation path. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-sa/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-sa/4.0/ 
546 |a English 
653 |a Causality 
653 |a Data Mining 
653 |a Signal processing 
653 |a System identification 
653 |a Time series 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/44557  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://www.ksp.kit.edu/9783731500988  |7 0  |z Open Access: DOAB, download the publication