LEADER 05248namaa2201021uu 4500
001 doab44454
003 oapen
005 20210211
006 m o d
007 cr|mn|---annan
008 210211s2020 xx |||||o ||| 0|eng d
020 |a 9783039283606 
020 |a 9783039283613 
020 |a books978-3-03928-361-3 
024 7 |a 10.3390/books978-3-03928-361-3  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
720 1 |a Hibi, Takayuki  |4 aut 
720 1 |a H  |4 aut 
245 0 0 |a Current Trends on Monomial and Binomial Ideals 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 online resource (140 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Historically, the study of monomial ideals became fashionable after the pioneering work by Richard Stanley in 1975 on the upper bound conjecture for spheres. On the other hand, since the early 1990s, under the strong influence of Gröbner bases, binomial ideals became gradually fashionable in commutative algebra. The last ten years have seen a surge of research work in the study of monomial and binomial ideals. Remarkable developments in, for example, finite free resolutions, syzygies, Hilbert functions, toric rings, as well as cohomological invariants of ordinary powers, and symbolic powers of monomial and binomial ideals, have been brought forward. The theory of monomial and binomial ideals has many benefits from combinatorics and Göbner bases. Simultaneously, monomial and binomial ideals have created new and exciting aspects of combinatorics and Göbner bases. In the present Special Issue, particular attention was paid to monomial and binomial ideals arising from combinatorial objects including finite graphs, simplicial complexes, lattice polytopes, and finite partially ordered sets, because there is a rich and intimate relationship between algebraic properties and invariants of these classes of ideals and the combinatorial structures of their combinatorial counterparts. This volume gives a brief summary of recent achievements in this area of research. It will stimulate further research that encourages breakthroughs in the theory of monomial and binomial ideals. This volume provides graduate students with fundamental materials in this research area. Furthermore, it will help researchers find exciting activities and avenues for further exploration of monomial and binomial ideals. The editors express our thanks to the contributors to the Special Issue. Funds for APC (article processing charge) were partially supported by JSPS (Japan Society for the Promotion of Science) Grants-in-Aid for Scientific Research (S) entitled ""The Birth of Modern Trends on Commutative Algebra and Convex Polytopes with Statistical and Computational Strategies"" (JP 26220701). The publication of this volume is one of the main activities of the grant. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
653 |a (S2) condition 
653 |a algebras with straightening laws 
653 |a associated graded rings 
653 |a Betti number 
653 |a bipartite graph 
653 |a Bipartite graphs 
653 |a Castelnuovo-Mumford regularity 
653 |a Castelnuovo-Mumford regularity 
653 |a chain polytope 
653 |a circuit 
653 |a circulant graphs 
653 |a Cohen Macaulay 
653 |a Cohen-Macaulay 
653 |a colon ideals 
653 |a complete intersection 
653 |a cover ideal 
653 |a depth 
653 |a depth of powers of bipartite graphs 
653 |a directed cycle 
653 |a distribuive lattice 
653 |a dstab 
653 |a edge ideal 
653 |a edge ideals 
653 |a edge polytope 
653 |a edge ring 
653 |a even cycle 
653 |a flawless 
653 |a graph 
653 |a graphs 
653 |a Gröbner bases 
653 |a h-vector 
653 |a integral closure 
653 |a linear part 
653 |a matching number 
653 |a monomial ideal 
653 |a multipartite graph 
653 |a O-sequence 
653 |a order and chain polytopes 
653 |a order polytope 
653 |a partially ordered set 
653 |a polymatroidal ideal 
653 |a projective dimension 
653 |a Rees algebra 
653 |a regular elements on powers of bipartite graphs 
653 |a regularity 
653 |a stable set polytope 
653 |a stable set polytopes 
653 |a Stanley depth 
653 |a Stanley-Reisner ideal 
653 |a Stanley-Reisner ring 
653 |a Stanley's inequality 
653 |a symbolic power 
653 |a syzygy 
653 |a toric ideals 
653 |a toric ring 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/44454  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/2106  |7 0  |z Open Access: DOAB, download the publication