Planar Maps, Random Walks and Circle Packing École d'Été de Probabilités de Saint-Flour XLVIII - 2018

This open access book focuses on the interplay between random walks on planar maps and Koebe's circle packing theorem. Further topics covered include electric networks, the He-Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Springer Nature 2020
Series:Lecture Notes in Mathematics
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 03124namaa2200505uu 4500
001 doab37818
003 oapen
005 20210210
006 m o d
007 cr|mn|---annan
008 210210s2020 xx |||||o ||| 0|eng d
020 |a 978-3-030-27968-4 
024 7 |a 10.1007/978-3-030-27968-4  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a PBD  |2 bicssc 
072 7 |a PBM  |2 bicssc 
072 7 |a PBT  |2 bicssc 
072 7 |a PHU  |2 bicssc 
720 1 |a Nachmias, Asaf  |4 aut 
245 0 0 |a Planar Maps, Random Walks and Circle Packing  |b École d'Été de Probabilités de Saint-Flour XLVIII - 2018 
260 |b Springer Nature  |c 2020 
300 |a 1 online resource (120 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture Notes in Mathematics 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This open access book focuses on the interplay between random walks on planar maps and Koebe's circle packing theorem. Further topics covered include electric networks, the He-Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits. One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided. A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex. One widely applicable method of drawing planar graphs is given by Koebe's circle packing theorem (1936). Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps. The book is aimed at researchers and graduate students in mathematics and is suitable for a single-semester course; only a basic knowledge of graduate level probability theory is assumed. 
536 |a H2020 European Research Council 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0  |2 cc  |u https://creativecommons.org/licenses/by/4.0 
546 |a English 
650 7 |a Discrete mathematics  |2 bicssc 
650 7 |a Geometry  |2 bicssc 
650 7 |a Mathematical physics  |2 bicssc 
650 7 |a Probability and statistics  |2 bicssc 
653 |a Discrete mathematics 
653 |a Geometry 
653 |a Mathematical physics 
653 |a Mathematics 
653 |a Probabilities 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/37818  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/23323/1/1006832.pdf  |7 0  |z Open Access: DOAB, download the publication