AI based Robot Safe Learning and Control

This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Singapore Springer Nature 2020
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 03135namaa2200637uu 4500
001 doab32049
003 oapen
005 20210210
006 m o d
007 cr|mn|---annan
008 210210s2020 xx |||||o ||| 0|eng d
020 |a 978-981-15-5503-9 
024 7 |a 10.1007/978-981-15-5503-9  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TJFM  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a UYQ  |2 bicssc 
720 1 |a Zhou, Xuefeng  |4 aut 
720 1 |a Cheng, Taobo  |4 aut 
720 1 |a Li, Shuai  |4 aut 
720 1 |a Lv, Xiaojing  |4 aut 
720 1 |a Wu, Hongmin  |4 aut 
720 1 |a Xu, Zhihao  |4 aut 
245 0 0 |a AI based Robot Safe Learning and Control 
260 |a Singapore  |b Springer Nature  |c 2020 
300 |a 1 online resource (127 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors' papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities. 
540 |a Creative Commons  |f by/4.0/  |2 cc  |u http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Artificial intelligence  |2 bicssc 
650 7 |a Automatic control engineering  |2 bicssc 
650 7 |a Robotics  |2 bicssc 
653 |a Adaptive Control 
653 |a Artificial intelligence 
653 |a Artificial Intelligence 
653 |a Automatic control engineering 
653 |a Control and Systems Theory 
653 |a Deep Reinforcement Learning 
653 |a Force Control 
653 |a Obstacle Ovoidance 
653 |a Open Access 
653 |a Recurrent Neural Network 
653 |a Robotic Engineering 
653 |a Robotics 
653 |a Robotics and Automation 
653 |a Safe Control 
653 |a Trajectory Tracking 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/32049  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/39583/1/2020_Book_AIBasedRobotSafeLearningAndCon.pdf  |7 0  |z Open Access: DOAB, download the publication