Chapter The Price of Uncertainty in Present-Biased Planning

The tendency to overestimate immediate utility is a common cognitive bias. As a result people behave inconsistently over time and fail to reach long-term goals. Behavioral economics tries to help affected individuals by implementing external incentives. However, designing robust incentives is oft...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Springer Nature 2017
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 03120namaa2200613uu 4500
001 doab31947
003 oapen
005 20210210
006 m o d
007 cr|mn|---annan
008 210210s2017 xx |||||o ||| 0|eng d
020 |a 978-3-319-71924-5_23 
024 7 |a 10.1007/978-3-319-71924-5_23  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a U  |2 bicssc 
720 1 |a Albers, Susanne  |4 aut 
720 1 |a Kraft, Dennis  |4 aut 
245 0 0 |a Chapter The Price of Uncertainty in Present-Biased Planning 
260 |b Springer Nature  |c 2017 
300 |a 1 online resource (15 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The tendency to overestimate immediate utility is a common cognitive bias. As a result people behave inconsistently over time and fail to reach long-term goals. Behavioral economics tries to help affected individuals by implementing external incentives. However, designing robust incentives is often difficult due to imperfect knowledge of the parameter β ∈ (0, 1] quantifying a person's present bias. Using the graphical model of Kleinberg and Oren [8], we approach this problem from an algorithmic perspective. Based on the assumption that the only information about β is its membership in some set B ⊂ (0, 1], we distinguish between two models of uncertainty: one in which β is fixed and one in which it varies over time. As our main result we show that the conceptual loss of effi- ciency incurred by incentives in the form of penalty fees is at most 2 in the former and 1 + max B/ min B in the latter model. We also give asymptotically matching lower bounds and approximation algorithms. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Computing and Information Technology  |2 bicssc 
653 |a Alice and Bob 
653 |a approximation algorithms 
653 |a approximation algorithms 
653 |a behavioral economics 
653 |a behavioral economics 
653 |a Decision problem 
653 |a Graph theory 
653 |a Graphical model 
653 |a heterogeneous agents 
653 |a heterogeneous agents 
653 |a incentive design 
653 |a incentive design 
653 |a NP (complexity) 
653 |a penalty fees 
653 |a penalty fees 
653 |a thema EDItEUR::U Computing and Information Technology 
653 |a Time complexity 
653 |a Upper and lower bounds 
653 |a variable present bias 
653 |a variable present bias 
773 1 |7 nnaa  |o OAPEN Library UUID: Web and Internet Economics 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/31947  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/30615/1/644832.pdf  |7 0  |z Open Access: DOAB, download the publication