Learning Ontology Relations by Combining Corpus-Based Techniques and Reasoning on Data from Semantic Web Sources

The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi-)automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relation...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Bern Peter Lang International Academic Publishing Group 2018
Series:Forschungsergebnisse der Wirtschaftsuniversitaet Wien
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 02785namaa2200589uu 4500
001 doab27633
003 oapen
005 20210210
006 m o d
007 cr|mn|---annan
008 210210s2018 xx |||||o ||| 0|eng d
020 |a 9783631753842 
020 |a b13903 
024 7 |a 10.3726/b13903  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a UBJ  |2 bicssc 
072 7 |a UFL  |2 bicssc 
720 1 |a Wohlgenannt, Gerhard  |4 aut 
245 0 0 |a Learning Ontology Relations by Combining Corpus-Based Techniques and Reasoning on Data from Semantic Web Sources 
260 |a Bern  |b Peter Lang International Academic Publishing Group  |c 2018 
300 |a 1 online resource (222 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Forschungsergebnisse der Wirtschaftsuniversitaet Wien 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi-)automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relations. It combines corpus-based techniques with reasoning on Semantic Web data. Corpus-based methods apply vector space similarity of verbs co-occurring with labeled and unlabeled relations to calculate relation label suggestions from a set of candidates. A meta ontology in combination with Semantic Web sources such as DBpedia and OpenCyc allows reasoning to improve the suggested labels. An extensive formal evaluation demonstrates the superior accuracy of the presented hybrid approach. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/legalcode  |2 cc  |u https://creativecommons.org/licenses/by/4.0/legalcode 
546 |a English 
650 7 |a Digital and information technologies: social and ethical aspects  |2 bicssc 
650 7 |a Enterprise software  |2 bicssc 
653 |a Based 
653 |a Combining 
653 |a Corpus 
653 |a Data 
653 |a from 
653 |a Learning 
653 |a machine learning 
653 |a natural language learning 
653 |a Ontology 
653 |a Reasoning 
653 |a relation labeling 
653 |a Relations 
653 |a Semantic 
653 |a Sources 
653 |a Techniques 
653 |a Wohlgenannt 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/27633  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/26873/1/1003170.pdf  |7 0  |z Open Access: DOAB, download the publication